Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Controlling Silicon Evaporation Improves Graphene

Georgia Tech Photo: Gary Meek

Georgia Tech graduate students Yike Hu and John Hankinson observe a high temperature furnace used to produce graphene on a silicon carbide wafer.
Georgia Tech Photo: Gary Meek

Georgia Tech graduate students Yike Hu and John Hankinson observe a high temperature furnace used to produce graphene on a silicon carbide wafer.

Abstract:
Scientists from the Georgia Institute of Technology have for the first time provided details of their "confinement controlled sublimation" technique for growing high-quality layers of epitaxial graphene on silicon carbide wafers. The technique relies on controlling the vapor pressure of gas-phase silicon in the high-temperature furnace used for fabricating the material.

Controlling Silicon Evaporation Improves Graphene

Atlanta, GA | Posted on September 22nd, 2011

The basic principle for growing thin layers of graphene on silicon carbide requires heating the material to about 1,500 degrees Celsius under high vacuum. The heat drives off the silicon, leaving behind one or more layers of graphene. But uncontrolled evaporation of silicon can produce poor quality material useless to designers of electronic devices.

"For growing high-quality graphene on silicon carbide, controlling the evaporation of silicon at just the right temperature is essential," said Walt de Heer, a professor who pioneered the technique in the Georgia Tech School of Physics. "By precisely controlling the rate at which silicon comes off the wafer, we can control the rate at which graphene is produced. That allows us to produce very nice layers of epitaxial graphene."

De Heer and his team begin by placing a silicon carbide wafer into an enclosure made of graphite. A small hole in the container controls the escape of silicon atoms as the one-square-centimeter wafer is heated, maintaining the rate of silicon evaporation and condensation near its thermal equilibrium. The growth of epitaxial graphene can be done in a vacuum or in the presence of an inert gas such as argon, and can be used to produce both single layers and multiple layers of the material.

"This technique seems to be completely in line with what people might one day do in fabrication facilities," de Heer said. "We believe this is quite significant in allowing us to rationally and reproducibly grow graphene on silicon carbide. We feel we now understand the process, and believe it could be scaled up for electronics manufacturing."

The technique for growing large-area layers of epitaxial graphene was described this week in the Early Edition of the journal Proceedings of the National Academy of Sciences. The research has been supported by the National Science Foundation through the Georgia Tech Materials Research Science and Engineering Center (MRSEC), the Air Force Office of Scientific Research, and the W.M. Keck Foundation.

The paper also describes a technique for growing narrow graphene ribbons, a process de Heer's group has called "templated growth." That technique, which could be useful for making graphene interconnects, was first described in October 2010 in the journal Nature Nanotechnology.

The templated growth technique involves etching patterns into silicon carbide surfaces using conventional nanolithography processes. The patterns serve as templates directing the growth of graphene structures on portions of the patterned surfaces. The technique forms nanoribbons of specific widths without the use of electron beams or other destructive cutting techniques. Graphene nanoribbons produced with these templates have smooth edges that avoid problems with electron scattering.

Together, the two techniques provide researchers with the flexibility to produce graphene in forms appropriate to different needs, de Heer noted. Large-area sheets of graphene may be grown on both the carbon-terminated and silicon-terminated sides of a silicon carbide wafer, while the narrow ribbons may be grown on the silicon-terminated side. Because of different processing techniques, only one side of a particular wafer can be used.

The Georgia Tech research team - which includes Claire Berger, Ming Ruan, Mike Sprinkle, Xuebin Li, Yike Hu, Baiqian Zhang, John Hankinson and Edward Conrad - has so far fabricated structures as narrow as 10 nanometers using the templated growth technique. These nanowires exhibit interesting quantum transport properties.

"We can make very good quantum wires using the templated growth technique," de Heer said. "We can make large structures and devices that demonstrate the Quantum Hall Effect, which is important for many applications. We have demonstrated that templated growth can go all the way down to the nanoscale, and that the properties get even better there."

Development of the sublimation technique arose from efforts to protect the growing graphene from oxygen and other contaminants in the furnace. To address the quality concerns, the research team tried enclosing the wafer in a graphite container from which some silicon gas was permitted to leak out.

"We soon realized that graphene grown in the container was much better than what we had been producing," de Heer recalled. "Originally, we thought it was because we were protecting it from contaminants. Later, we realized it was because we were controlling the evaporation of silicon."

Epitaxial graphene may be the basis for a new generation of high-performance devices that will take advantage of the material's unique properties in applications where higher costs can be justified. Silicon, today's electronic material of choice, will continue to be used in applications where high-performance is not required, de Heer said.

Though researchers are still struggling to design nanometer-scale epitaxial graphene devices that take advantage of the material's unique properties, de Heer is confident that will ultimately be done.

"These techniques allow us to make accurate nanostructures and seem to be very promising for making the nanoscale devices that we need," he said. "While there are serious challenges ahead for using graphene in electronics, we have overcome roadblocks before."

####

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986

or
Abby Robinson
404-385-3364

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Graphene

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Chip Technology

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Announcements

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE