Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Why carbon nanotubes spell trouble for cells

Something perpendicular this way comes Cells ingest things by engulfing them. When a long perpendicular fiber comes near, the cell senses only its tip, mistakes it for a sphere, and begins engulfing something too long to handle. Credit: Gao Lab/Brown University
Something perpendicular this way comes Cells ingest things by engulfing them. When a long perpendicular fiber comes near, the cell senses only its tip, mistakes it for a sphere, and begins engulfing something too long to handle.

Credit: Gao Lab/Brown University

Abstract:
Carbon nanotubes and other long nanomaterials can spell trouble for cells. The reason: Cells mistake them for spheres and try to engulf them. Once they start, cells cannot reverse course, and complete ingestion never occurs. Researchers at Brown University detail for the first time how cells interact with carbon nanotubes, gold nanowires and asbestos fibers. Results are published in Nature Nanotechnology.

Cells bite off more than they can chew from Brown PAUR on Vimeo.



Misrecognition
Receptors on the cell's surface crowd around the nanotube, effectively standing it upright. The cell mistakes the tube for a sphere and begins to engulf it.
Credit: Gao Lab/Brown University

Why carbon nanotubes spell trouble for cells

Providence, RI | Posted on September 21st, 2011

It's been long known that asbestos spells trouble for human cells. Scientists have seen cells stabbed with spiky, long asbestos fibers, and the image is gory: Part of the fiber is protruding from the cell, like a quivering arrow that's found its mark.

But scientists had been unable to understand why cells would be interested in asbestos fibers and other materials at the nanoscale that are too long to be fully ingested. Now a group of researchers at Brown University explains what happens. Through molecular simulations and experiments, the team reports in Nature Nanotechnology that certain nanomaterials, such as carbon nanotubes, enter cells tip-first and almost always at a 90-degree angle. The orientation ends up fooling the cell; by taking in the rounded tip first, the cell mistakes the particle for a sphere, rather than a long cylinder. By the time the cell realizes the material is too long to be fully ingested, it's too late.

"It's as if we would eat a lollipop that's longer than us," said Huajian Gao, professor of engineering at Brown and the paper's corresponding author. "It would get stuck."

The research is important because nanomaterials like carbon nanotubes have promise in medicine, such as acting as vehicles to transport drugs to specific cells or to specific locations in the human body. If scientists can fully understand how nanomaterials interact with cells, then they can conceivably design products that help cells rather than harm them.

"If we can fully understand (nanomaterial-cell dynamics), we can make other tubes that can control how cells interact with nanomaterials and not be toxic," Gao said. "We ultimately want to stop the attraction between the nanotip and the cell."

Like asbestos fibers, commercially available carbon nanotubes and gold nanowires have rounded tips that often range from 10 to 100 nanometers in diameter. Size is important here; the diameter fits well within the cell's parameters for what it can handle. Brushing up against the nanotube, special proteins called receptors on the cell spring into action, clustering and bending the membrane wall to wrap the cell around the nanotube tip in a sequence that the authors call "tip recognition." As this occurs, the nanotube is tipped to a 90-degree angle, which reduces the amount of energy needed for the cell to engulf the particle.

Once the engulfing ó endocytosis ó begins, there is no turning back. Within minutes, the cell senses it can't fully engulf the nanostructure and essentially dials 911. "At this stage, it's too late," Gao said. "It's in trouble and calls for help, triggering an immune response that can cause repeated inflammation."

The team hypothesized the interaction using coarse-grained molecular dynamic simulations and capped multiwalled carbon nanotubes. In experiments involving nanotubes and gold nanowires and mouse liver cells and human mesothelial cells, the nanomaterials entered the cells tip-first and at a 90-degree angle about 90 percent of the time, the researchers report.

"We thought the tube was going to lie on the cell membrane to obtain more binding sites. However, our simulations revealed the tube steadily rotating to a high-entry degree, with its tip being fully wrapped," said Xinghua Shi, first author on the paper who earned his doctorate at Brown and is at the Chinese Academy of Sciences in Beijing. "It is counter-intuitive and is mainly due to the bending energy release as the membrane is wrapping the tube."

The team would like to study whether nanotubes without rounded tips ó or less rigid nanomaterials such as nanoribbons ó pose the same dilemma for cells.

"Interestingly, if the rounded tip of a carbon nanotube is cut off (meaning the tube is open and hollow), the tube lies on the cell membrane, instead of entering the cell at a high-degree-angle," Shi said.

Agnes Kane, professor of pathology and laboratory medicine at Brown, is a corresponding author on the paper. Other authors include Annette von dem Bussche from the Department of Pathology and Laboratory Medicine at Brown and Robert Hurt from the Institute for Molecular and Nanoscale Innovation at Brown.

The National Science Foundation, the U.S. Department of Commerce National Institute of Standards and Technology, the National Institute of Environmental Health Sciences Superfund Research Program, and the American Recovery and Reinvestment Act funded the research.

####

For more information, please click here

Contacts:
Providence, Rhode Island 02912
USA
Richard Lewis
401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Safety-Nanoparticles/Risk management

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project