Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Proton-Based Transistor Could Let Machines Communicate with Living Things

Abstract:
Human devices, from light bulbs to iPods, send information using electrons. Human bodies and all other living things, on the other hand, send signals and perform work using ions or protons.

Proton-Based Transistor Could Let Machines Communicate with Living Things

Seattle, WA | Posted on September 20th, 2011

Materials scientists at the University of Washington have built a novel transistor that uses protons, creating a key piece for devices that can communicate directly with living things. The study is published online this week in the interdisciplinary journal Nature Communications.

Devices that connect with the human body's processes are being explored for biological sensing or for prosthetics, but they typically communicate using electrons, which are negatively charged particles, rather than protons, which are positively charged hydrogen atoms, or ions, which are atoms with positive or negative charge.

"So there's always this issue, a challenge, at the interface - how does an electronic signal translate into an ionic signal, or vice versa?" said lead author Marco Rolandi, a UW assistant professor of materials science and engineering. "We found a biomaterial that is very good at conducting protons, and allows the potential to interface with living systems."

In the body, protons activate "on" and "off" switches and are key players in biological energy transfer. Ions open and close channels in the cell membrane to pump things in and out of the cell. Animals including humans use ions to flex their muscles and transmit brain signals. A machine that was compatible with a living system in this way could, in the short term, monitor such processes. Someday it could generate proton currents to control certain functions directly.

A first step toward this type of control is a transistor that can send pulses of proton current. The prototype device is a field-effect transistor, a basic type of transistor that includes a gate, a drain and a source terminal for the current. The UW prototype is the first such device to use protons. It measures about 5 microns wide, roughly a twentieth the width of a human hair.

"In our device large bioinspired molecules can move protons, and a proton current can be switched on and off, in a way that's completely analogous to an electronic current in any other field effect transistor," Rolandi said.

The device uses a modified form of the compound chitosan originally extracted from squid pen, a structure that survives from when squids had shells. The material is compatible with living things, is easily manufactured, and can be recycled from crab shells and squid pen discarded by the food industry.

First author Chao Zhong, a UW postdoctoral researcher, and second author Yingxin Deng, a UW graduate student, discovered that this form of chitosan works remarkably well at moving protons. The chitosan absorbs water and forms many hydrogen bonds; protons are then able to hop from one hydrogen bond to the next.

Computer models of charge transport developed by co-authors M.P. Anantram, a UW professor of electrical engineering, and Anita Fadavi Roudsari at Canada's University of Waterloo, were a good match for the experimental results.

"So we now have a protonic parallel to electronic circuitry that we actually start to understand rather well," Rolandi said.

Applications in the next decade or so, Rolandi said, would likely be for direct sensing of cells in a laboratory. The current prototype has a silicon base and could not be used in a human body. Longer term, however, a biocompatible version could be implanted directly in living things to monitor, or even control, certain biological processes directly.

The other co-author is UW materials science and engineering graduate student Adnan Kapetanovic. The research was funded by the University of Washington, a 3M Untenured Faculty Grant, a National Cancer Institute fellowship and the UW's Center for Nanotechnology, which is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Molly McElroy
University of Washington
206-543-2580


Rolandi
206-221-0309

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Chip Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Discoveries

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Nanobiotechnology

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotix appoints senior executive from pharmaceutical industry, as Chief Operating Officer: Oncology industry veteran to oversee operations and product commercialization February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project