Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Analytical Biochemistry article highlights utility of NanoInk platform for single cell co-culture studies

Abstract:
NanoInk's® NanoFabrication Systems Division is pleased to announce that its manuscript titled, "Sub-cellular scaled multiplexed protein patterns for single cell co-cultures," has been accepted for publication in the international journal, Analytical Biochemistry. Leveraging patented Dip Pen Nanolithography® (DPN®) technology, findings presented in this article demonstrate the NanoInk platform's ability to construct sub-cellular scaled features of multiple proteins and to subsequently manipulate and study the function of individual cells as well as cellular interactions. An abstract and the complete article can be viewed by clicking on the following link: www.sciencedirect.com/science/article/pii/S0003269711005410.

Analytical Biochemistry article highlights utility of NanoInk platform for single cell co-culture studies

Chicago, IL | Posted on September 20th, 2011

Co-culture experiments are invaluable for their ability to mimic the in vivo environment and facilitate the study of the effects of cell-cell interactions on stem or progenitor cell differentiation and function in normal and disease states. Conventional co-culture techniques like random seeding of multiple cell populations, membrane separation of cell types, and extracellular protein micropatterning are limiting due to the number of experimental variables that cannot be properly controlled.

"Unlike other technology platforms and conventional co-culture techniques, the forthcoming Analytical Biochemistry article demonstrates that NanoInk's tip-based direct protein printing platform deposits sub-micron sized features with nanoscale registry under ambient conditions and enables consistent and controlled live single cell co-culture studies," said Tom Warwick, General Manager of the NanoFabrication Systems Division.

"Using NanoInk's NLP 2000 System, a simple and user-friendly desktop nanolithography platform, the researchers were able to pattern multiple extracellular matrix proteins on a glass substrate at sub-cellular scales. NIH 3T3 fibroblasts and C2C12 myoblasts were differentially bound at the single cell level to the laminin and fibronectin features," said Dr. John Collins, Application Scientist at NanoInk and the lead author on the paper.

Microenvironmental control was demonstrated by regulating the shape of bound cells using various patterns of ECM proteins. Fibronectin features were deposited on glass surfaces in different geometric shapes and the attached cells were demonstrably constrained by pattern geometry. Precise control of cell cluster size was also demonstrated by varying the dimensions of the total patterned area. Cluster size is known to play a crucial role in cell function for many cell types.

"With the upcoming Analytical Biochemistry article, NanoInk demonstrates the ability to precisely co-culture multiple cell types within microns of each other. We expect that NanoInk systems will facilitate a better understanding of cellular behavior and enable many cell-biology applications where precise control of the cellular microenvironment is important," explained Warwick.

NanoInk's NanoFabrication Systems Division is dedicated to developing and supporting a wide range of biological applications for the NLP 2000 System. For sales information, please email: . More information is available at: www.nanoink.net/divisions.html#NanoFabrication.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life sciences, engineering, pharmaceutical, and education industries. Using Dip Pen Nanolithography (DPN), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create micro-and nanoscale structures from a variety of materials on a range of substrates. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop. Headquartered in the Illinois Science + Technology Park, north of Chicago, NanoInk currently has several divisions including the NanoFabrication Systems Division, the Nano BioDiscovery Division, the NanoProfessorTM Division and the NanoGuardianTM Division.

NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN, NanoGuardian and NanoProfessor are trademarks or registered trademarks of NanoInk, Inc.

For more information, please click here

Contacts:
Dresner Corporate Services
(312)780-7204


Caitlin Carr
Dresner Corporate Services
(312)780-7220

Copyright © NanoInk, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project