Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > U of T-led research improves performance of next-generation solar cell technology

Abstract:
Researchers from the University of Toronto (U of T), the King Abdullah University of Science & Technology (KAUST) and Pennsylvania State University (Penn State) have created the most efficient solar cell ever made based on collodial-quatum-dots (CQD).

U of T-led research improves performance of next-generation solar cell technology

Toronto, Canada | Posted on September 19th, 2011

The discovery is reported in the latest issue of Nature Materials.

Quantum dots are nanoscale semiconductors that capture light and convert it into an energy source. Because of their small scale, the dots can be sprayed on to flexible surfaces, including plastics. This enables the production of solar cells that are less expensive to produce and more durable than the more widely-known silicon-based version. In the work highlighted by the Nature Materials paper entitled "Collodial-quantum-dot photovoltaics using atomic-ligand passivation," the researchers demonstrate how the wrappers that encapsulate the quantum dots can be shrunk to a mere layer of atoms.

"We figured out how to shrink the passivating materials to the smallest imaginable size," states Professor Ted Sargent, corresponding author on the work and holder of the Canada Research Chair in Nanotechnology at U of T.

A crucial challenge for the field has been striking a balance between convenience and performance. The ideal design is one that tightly packs the quantum dots together. The greater the distance between quantum dots, the lower the efficiency.

However the quantum dots are usually capped with organic molecules that add a nanometer or two. When working on a nanoscale, that is bulky. Yet the organic molecules have been an important ingredient in creating a colloid, which is a substance that is dispersed in another substance. This allows the quantum dots to be painted on to other surfaces.

To solve the problem, the researchers have turned to inorganic ligands, which bind the quantum dots together while using less space. The result is the same colloid characteristics but without the bulky organic molecules.

"We wrapped a single layer of atoms around each particle. As a result, they packed the quantum dots into a very dense solid," explains Dr. Jiang Tang, the first author of the paper who conducted the research while a post-doctoral fellow in The Edward S. Rogers Department of Electrical & Computer Engineering at U of T.

The team showed the highest electrical currents, and the highest overall power conversion efficiency, ever seen in CQD solar cells. The performance results were certified by an external laboratory, Newport, that is accredited by the US National Renewable Energy Laboratory.

"The team proved that we were able to remove charge traps - locations where electrons get stuck - while still packing the quantum dots closely together," says Professor John Asbury of Penn State, a co-author of the work.

The combination of close packing and charge trap elimination enabled electrons to move rapidly and smoothly through the solar cells, thus providing record efficiency.

"This finding proves the power of inorganic ligands in building practical devices," states Professor Dmitri Talapin of The University of Chicago, who is a research leader in the field. "This new surface chemistry provides the path toward both efficient and stable quantum dot solar cells. It should also impact other electronic and optoelectronic devices that utilize colloidal nanocrystals. Advantages of the all-inorganic approach include vastly improved electronic transport and a path to long-term stability."

"At KAUST we were able to visualize, with incredible resolution on the sub-nanometer lengthscale, the structure and composition of this remarkable new class of materials," states Professor Aram Amassian of KAUST, a co-author on the work.

"We proved that the inorganic passivants were tightly correlated with the location of the quantum dots; and that it was this new approach to chemical passivation, rather than nanocrystal ordering, that led to this record-breaking colloidal quantum dot solar cell performance," he adds.

As a result of the potential of this research discovery, a technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will will enable the global commercialization of this new technology.

"The world - and the marketplace - need solar innovations that break the existing compromise between performance and cost. Through U of T's, MI's, and KAUST's partnership, we are poised to translate exciting research into tangible innovations that can be commercialized," said Sargent.

To read the published paper in its entirety, please contact Liam Mitchell, Communications & Media Relations Strategist for the Faculty of Applied Science & Engineering, University of Toronto.

####

About University of Toronto
The Faculty of Applied Science & Engineering at the University of Toronto is the premier engineering institution in Canada and among the very best in the world. With approximately 4,850 undergraduates, 1,600 graduate students and 230 professors, U of T Engineering is at the fore of innovation in engineering education and research. www.engineering.utoronto.ca

For more information, please click here

Contacts:
Professor Edward Sargent
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
Faculty of Applied Science & Engineering
University of Toronto
416-946-5051


Liam Mitchell
Communications & Media Relations Strategist
Faculty of Applied Science & Engineering
University of Toronto
416-978-4498

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Quantum Dots/Rods

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Research partnerships

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project