Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > U of T-led research improves performance of next-generation solar cell technology

Abstract:
Researchers from the University of Toronto (U of T), the King Abdullah University of Science & Technology (KAUST) and Pennsylvania State University (Penn State) have created the most efficient solar cell ever made based on collodial-quatum-dots (CQD).

U of T-led research improves performance of next-generation solar cell technology

Toronto, Canada | Posted on September 19th, 2011

The discovery is reported in the latest issue of Nature Materials.

Quantum dots are nanoscale semiconductors that capture light and convert it into an energy source. Because of their small scale, the dots can be sprayed on to flexible surfaces, including plastics. This enables the production of solar cells that are less expensive to produce and more durable than the more widely-known silicon-based version. In the work highlighted by the Nature Materials paper entitled "Collodial-quantum-dot photovoltaics using atomic-ligand passivation," the researchers demonstrate how the wrappers that encapsulate the quantum dots can be shrunk to a mere layer of atoms.

"We figured out how to shrink the passivating materials to the smallest imaginable size," states Professor Ted Sargent, corresponding author on the work and holder of the Canada Research Chair in Nanotechnology at U of T.

A crucial challenge for the field has been striking a balance between convenience and performance. The ideal design is one that tightly packs the quantum dots together. The greater the distance between quantum dots, the lower the efficiency.

However the quantum dots are usually capped with organic molecules that add a nanometer or two. When working on a nanoscale, that is bulky. Yet the organic molecules have been an important ingredient in creating a colloid, which is a substance that is dispersed in another substance. This allows the quantum dots to be painted on to other surfaces.

To solve the problem, the researchers have turned to inorganic ligands, which bind the quantum dots together while using less space. The result is the same colloid characteristics but without the bulky organic molecules.

"We wrapped a single layer of atoms around each particle. As a result, they packed the quantum dots into a very dense solid," explains Dr. Jiang Tang, the first author of the paper who conducted the research while a post-doctoral fellow in The Edward S. Rogers Department of Electrical & Computer Engineering at U of T.

The team showed the highest electrical currents, and the highest overall power conversion efficiency, ever seen in CQD solar cells. The performance results were certified by an external laboratory, Newport, that is accredited by the US National Renewable Energy Laboratory.

"The team proved that we were able to remove charge traps - locations where electrons get stuck - while still packing the quantum dots closely together," says Professor John Asbury of Penn State, a co-author of the work.

The combination of close packing and charge trap elimination enabled electrons to move rapidly and smoothly through the solar cells, thus providing record efficiency.

"This finding proves the power of inorganic ligands in building practical devices," states Professor Dmitri Talapin of The University of Chicago, who is a research leader in the field. "This new surface chemistry provides the path toward both efficient and stable quantum dot solar cells. It should also impact other electronic and optoelectronic devices that utilize colloidal nanocrystals. Advantages of the all-inorganic approach include vastly improved electronic transport and a path to long-term stability."

"At KAUST we were able to visualize, with incredible resolution on the sub-nanometer lengthscale, the structure and composition of this remarkable new class of materials," states Professor Aram Amassian of KAUST, a co-author on the work.

"We proved that the inorganic passivants were tightly correlated with the location of the quantum dots; and that it was this new approach to chemical passivation, rather than nanocrystal ordering, that led to this record-breaking colloidal quantum dot solar cell performance," he adds.

As a result of the potential of this research discovery, a technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will will enable the global commercialization of this new technology.

"The world - and the marketplace - need solar innovations that break the existing compromise between performance and cost. Through U of T's, MI's, and KAUST's partnership, we are poised to translate exciting research into tangible innovations that can be commercialized," said Sargent.

To read the published paper in its entirety, please contact Liam Mitchell, Communications & Media Relations Strategist for the Faculty of Applied Science & Engineering, University of Toronto.

####

About University of Toronto
The Faculty of Applied Science & Engineering at the University of Toronto is the premier engineering institution in Canada and among the very best in the world. With approximately 4,850 undergraduates, 1,600 graduate students and 230 professors, U of T Engineering is at the fore of innovation in engineering education and research. www.engineering.utoronto.ca

For more information, please click here

Contacts:
Professor Edward Sargent
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
Faculty of Applied Science & Engineering
University of Toronto
416-946-5051


Liam Mitchell
Communications & Media Relations Strategist
Faculty of Applied Science & Engineering
University of Toronto
416-978-4498

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Quantum Dots/Rods

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Solar/Photovoltaic

September 5th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project