Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Let the Sun Shine in: Nanorods made of fullerenes improve performance of polymer solar cells

Abstract:
The biggest obstacle to making use of solar energy has been the excessively high price of solar cells made of inorganic semiconductors. In contrast, solar cells based on semiconducting polymers are affordable, light, thin, and flexible—but their performance has been lacking. A team led by Chain-Shu Hsu at the National Chaio Tung University and Yuh-Lin Wang at Academia Sinica in Taiwan has now developed a new approach that uses fullerene nanorods to significantly increase the effectiveness of polymer-based solar cells. They introduce their work in the journal Angewandte Chemie.

Let the Sun Shine in: Nanorods made of fullerenes improve performance of polymer solar cells

Germany | Posted on September 15th, 2011

In the photoactive layer of a solar cell, light energy sets electrons free. This leaves behind positively charged gaps or "holes". Electrons and holes must be separated quickly and efficiently, or they recombine and reduce the power of the solar cell. The efficiency of a solar cell thus depends on how well the resulting charge is directed away and transported to the electrodes.

In polymer solar cells, it is possible to attain more efficient charge separation through the addition of acceptors, such as fullerenes, which take up electrons. One highly promising concept is to embed the acceptor molecules in a disordered matrix made of photoactive polymer chains. The boundary surface between the two components is thus spread over the entire layer. This construct is known as a "bulk-hetero contact". After charge separation, the electrons and holes are located in different molecular systems, which transport them selectively to opposite electrodes.

The problem is that the two materials are not evenly distributed. The travel pathways for the charges are thus disordered, allowing holes and electrons to encounter each other easily. In addition, charge-separated islands can occur. The solution would be an "ordered bulk-hetero contact", a periodic structure of vertically directed, interpenetrating regions of both materials. Electrons and holes would then have straight pathways that do not cross. However, it has previously not been possible to produce any effective photolayer using this principle, because the components are not molecularly intermixed, making the electron pathways too long to produce effective charge separation.

The Taiwanese researchers decided to combine the two structural principles. By using a nano-casting process, they produced a layer of vertically oriented nanorods from a cross-linking polymeric fullerene material. The spaces between the rods were filled with a mixture made from a photoactive polymer and a fullerene. This layer ensures effective charge separation, and the interpenetration of the fullerene nanorods ensures ordered - and thus effective—charge transport. Solar cells made with this novel combined photolayer are stable and achieve amazingly high performance.

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project