Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Let the Sun Shine in: Nanorods made of fullerenes improve performance of polymer solar cells

Abstract:
The biggest obstacle to making use of solar energy has been the excessively high price of solar cells made of inorganic semiconductors. In contrast, solar cells based on semiconducting polymers are affordable, light, thin, and flexible—but their performance has been lacking. A team led by Chain-Shu Hsu at the National Chaio Tung University and Yuh-Lin Wang at Academia Sinica in Taiwan has now developed a new approach that uses fullerene nanorods to significantly increase the effectiveness of polymer-based solar cells. They introduce their work in the journal Angewandte Chemie.

Let the Sun Shine in: Nanorods made of fullerenes improve performance of polymer solar cells

Germany | Posted on September 15th, 2011

In the photoactive layer of a solar cell, light energy sets electrons free. This leaves behind positively charged gaps or "holes". Electrons and holes must be separated quickly and efficiently, or they recombine and reduce the power of the solar cell. The efficiency of a solar cell thus depends on how well the resulting charge is directed away and transported to the electrodes.

In polymer solar cells, it is possible to attain more efficient charge separation through the addition of acceptors, such as fullerenes, which take up electrons. One highly promising concept is to embed the acceptor molecules in a disordered matrix made of photoactive polymer chains. The boundary surface between the two components is thus spread over the entire layer. This construct is known as a "bulk-hetero contact". After charge separation, the electrons and holes are located in different molecular systems, which transport them selectively to opposite electrodes.

The problem is that the two materials are not evenly distributed. The travel pathways for the charges are thus disordered, allowing holes and electrons to encounter each other easily. In addition, charge-separated islands can occur. The solution would be an "ordered bulk-hetero contact", a periodic structure of vertically directed, interpenetrating regions of both materials. Electrons and holes would then have straight pathways that do not cross. However, it has previously not been possible to produce any effective photolayer using this principle, because the components are not molecularly intermixed, making the electron pathways too long to produce effective charge separation.

The Taiwanese researchers decided to combine the two structural principles. By using a nano-casting process, they produced a layer of vertically oriented nanorods from a cross-linking polymeric fullerene material. The spaces between the rods were filled with a mixture made from a photoactive polymer and a fullerene. This layer ensures effective charge separation, and the interpenetration of the fullerene nanorods ensures ordered - and thus effective—charge transport. Solar cells made with this novel combined photolayer are stable and achieve amazingly high performance.

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Energy

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Solar/Photovoltaic

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

A type of nanostructure increases the efficiency of electricity-producing photovoltaic June 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic