Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductors and X-ray beams: the drawing shapes

Abstract:
An Italian-British team of scientists has succeeded in drawing superconducting shapes using an X-ray beam. Presented in the journal Nature Materials, the study shows how being able to create and control tiny superconducting structures could lead to innovative electronic devices. The research was funded in part by COMEPHS ('Controlling mesoscopic phase separation'), a project supported by the EU. COMEPHUS was backed under the 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' (NMP) Thematic area of the EU's Sixth Framework Programme (FP6) to the tune of EUR 3.18 million.

Superconductors and X-ray beams: the drawing shapes

Brussels, Belgium | Posted on September 14th, 2011

Researchers from the London Centre for Nanotechnology in the United Kingdom and Sapienza University of Rome in Italy have successfully manipulated regions of high temperature superconductivity, in a material that combines oxygen, copper and a heavier element called lanthanum, at the Elettra (Trieste) synchrotron radiation facility. Superconductivity, say experts, is a special state where a material conducts electricity with no resistance. In essence, zero energy is wasted.

According to the researchers, high temperature superconductivity is triggered when oxygen atoms in the material are re-arranged thanks to X-rays being illuminated. This type was first discovered by scientists a quarter of a century ago. Shapes can be drawn in two dimensions when the X-ray beam is used like a pen.

The researchers could also erase structures by applying heat treatments. So not only do the tools allow them to write/draw with high precision, but they can also erase with just a few easy steps and without any chemicals. They say rearranging the underlying structure of a material can be applied to other compounds containing metal atoms and oxygen. Fuel cells and catalysts are an example.

'Our validation of a one-step, chemical-free technique to generate superconductors opens up exciting new possibilities for electronic devices, particularly in re-writing superconducting logic circuits,' says co-author Professor Gabriel Aeppli of the London Centre for Nanotechnology and the Department of Physics and Astronomy, University College London. 'Of profound importance is the key to solving the notorious 'travelling salesman problem', which underlies many of the world's great computational challenges. We want to create computers on demand to solve this problem, with applications from genetics to logistics. A discovery like this means a paradigm shift in computing technology is one step closer.'

Commenting on the results, co-author Professor Antonio Bianconi of Sapienza University in Rome says: 'It is amazing that in a few simple steps, we can now add superconducting 'intelligence' directly to a material consisting mainly of the common elements copper and oxygen.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

University College London:

Nature Materials:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project