Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Superconductors and X-ray beams: the drawing shapes

Abstract:
An Italian-British team of scientists has succeeded in drawing superconducting shapes using an X-ray beam. Presented in the journal Nature Materials, the study shows how being able to create and control tiny superconducting structures could lead to innovative electronic devices. The research was funded in part by COMEPHS ('Controlling mesoscopic phase separation'), a project supported by the EU. COMEPHUS was backed under the 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' (NMP) Thematic area of the EU's Sixth Framework Programme (FP6) to the tune of EUR 3.18 million.

Superconductors and X-ray beams: the drawing shapes

Brussels, Belgium | Posted on September 14th, 2011

Researchers from the London Centre for Nanotechnology in the United Kingdom and Sapienza University of Rome in Italy have successfully manipulated regions of high temperature superconductivity, in a material that combines oxygen, copper and a heavier element called lanthanum, at the Elettra (Trieste) synchrotron radiation facility. Superconductivity, say experts, is a special state where a material conducts electricity with no resistance. In essence, zero energy is wasted.

According to the researchers, high temperature superconductivity is triggered when oxygen atoms in the material are re-arranged thanks to X-rays being illuminated. This type was first discovered by scientists a quarter of a century ago. Shapes can be drawn in two dimensions when the X-ray beam is used like a pen.

The researchers could also erase structures by applying heat treatments. So not only do the tools allow them to write/draw with high precision, but they can also erase with just a few easy steps and without any chemicals. They say rearranging the underlying structure of a material can be applied to other compounds containing metal atoms and oxygen. Fuel cells and catalysts are an example.

'Our validation of a one-step, chemical-free technique to generate superconductors opens up exciting new possibilities for electronic devices, particularly in re-writing superconducting logic circuits,' says co-author Professor Gabriel Aeppli of the London Centre for Nanotechnology and the Department of Physics and Astronomy, University College London. 'Of profound importance is the key to solving the notorious 'travelling salesman problem', which underlies many of the world's great computational challenges. We want to create computers on demand to solve this problem, with applications from genetics to logistics. A discovery like this means a paradigm shift in computing technology is one step closer.'

Commenting on the results, co-author Professor Antonio Bianconi of Sapienza University in Rome says: 'It is amazing that in a few simple steps, we can now add superconducting 'intelligence' directly to a material consisting mainly of the common elements copper and oxygen.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

University College London:

Nature Materials:

Related News Press

News and information

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Superconductivity

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Chip Technology

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Discoveries

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Announcements

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizardŽ ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project