Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Help for nanoscale materials research

Nanoparticles on a water-oil interface under the cryo-scanning electron microscope. To measure the contact angle, the sample was fractured and coated with metal at an oblique angle. (Photo: Lucio Isa / EMEZ/ ETH Zurich)
Nanoparticles on a water-oil interface under the cryo-scanning electron microscope. To measure the contact angle, the sample was fractured and coated with metal at an oblique angle.

(Photo: Lucio Isa / EMEZ/ ETH Zurich)

Abstract:
If nanoparticles are incorporated into a material with the aim of imparting new functions, the properties of the single nanoparticles have to be precisely characterized. To date this information was only available for individual nanoparticles that are smaller than 500 nanometres. Now, the refinement of a procedure used in biology to study cell membranes has shed light onto even smaller "dwarves".

Help for nanoscale materials research

Zurich, Switzerland | Posted on September 3rd, 2011

Scientists from ETH Zurich have succeeded in solving a key problem in materials research: they have developed a procedure with which they can measure the contact angle of a nanoparticle as small as ten nanometres at the interface between two liquids. "Knowing this contact angle is essential for the production of new materials using the interface as a ‘template'," says Lucio Isa, a postdoc at the Laboratory of Surface Science and Technology and first author of the study published in Nature Communications. The contact angle contains all the important information on the behaviour of the nanoparticles and therefore determines the structure of the new material. Its knowledge will thus enable the scientists to achieve optimal control on the fabrication of materials with desired properties.
Displaying the properties of tiny nanoparticles

In their research, the scientists study layers of water and oil-like substances in contact with each other, so called liquid or fluid interfaces. They then place at such fluid interfaces hydrophilic (water-loving) and hydrophobic (oil-loving) nanoparticles that are up to 5000 times smaller than the diameter of a human hair. The deeper the particles dip into the water, the smaller their contact angle. Using traditional imaging methods, however, until now it was not possible to measure such contact angles directly for individual nanoparticles smaller than 500 nanometres. "On this scale, light begins to interfere with the sample and electron microscopy becomes necessary," explains Roger Wepf, Head of ETH Zurich's Electron Microscopy Centre. To date, the contact angle of very small nanoparticles could only be measured indirectly with other methods, often imposing strong approximations or requiring chemical modifications to the system.

During a brain storming, Wepf gave Isa the idea of using a classical, purely physical procedure to measure contact angles: the so-called freeze-fracture technique, which has mainly been used by biologists during the last fifteen years. They use it to freeze samples within microseconds and the fracture them to study the internal structure of cells under a cryo-scanning electron microscope. Isa and his team have now extended the freeze-fracture technique to freeze nanoparticle-laden interfaces and fracture them to expose the nanoparticles. Upon fracture, the interface opens as a book and, as a result, the nanoparticles stick out from the frozen interface and leave a hollow print on the opposite side. The particles are then coated with a thin (one to three nanometres) metal layer at an oblique angle.

The metal coating makes the nanoparticles visible in the cryogenic scanning electron microscope and then the scientists can accurately measure their size and distance between one another. The oblique coating angle casts a shadow behind each particle, similarly to a sundial. By measuring the length of the shadow it is possible to obtain the height of the particles relative to the interface, which in turn determines their contact angle. Knowing the contact angle makes it possible for the scientists to calculate how much space each particle takes up at the interface, which determines how much energy is used to hold the particles there.
Particles as stabilisers

Among other things, this information is important in our everyday life for the production of emulsions in which fats and liquids are processed together - such as in ointments, creams or mayonnaise, where small proteins take over the role of the nanoparticles and stabilise the emulsion. "If you pour oil and vinegar together, mix them and then go and make a phone call, they will have separated again by the time you come back," explains Isa. But if you mix in pepper, the pepper powder occupies the interface between vinegar and oil and thus stabilises the emulsion.

Isa highlights the new and attractive possibilities that this method opens up in medicine - such as in the research on "nano-medicine transporters", which are to be used to deliver medication straight into tumour cells. However, Isa's passion is classical materials research: "For me, it is extremely important to understand the fundamental behaviour of nanoparticles at liquid interfaces and how we can use them to produce materials with new and exciting properties."

According to the researchers the measurements show that contact angles can vary significantly between nanoparticles of the same kind. Controlling these variations will allow nano-materials with much better defined properties to be produced in the future.

####

For more information, please click here

Contacts:
ETH Zurich
Editorial Office
HG F 41
Raemistrasse 101
8092 Zurich
SWITZERLAND

Fax +41 44 632 17 16

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Further reading - Isa L, Lucas F, Wepf R & Reimhult E: Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy, Nature Communications (2011), doi: 10.1038/ncomms1441 (2011)

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Materials/Metamaterials

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE