Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-thermometers show first temperature response differences within living cells

Abstract:
Localized, transient temperature responses inside single living cells upon external chemical and mechanical stresses have been confirmed by using quantum dots as nano thermometers. Photoluminescence spectra maps from endocytosed quantum dots were used to reveal intra-cellular heat generation in NIH/3T3 cells following Ca2+-stress and cold-shock tests. The in-situ observation of inhomogeneous thermogenesis could lead to broad understanding of biological mechanisms in energy generation/conversion and health-related metabolism processes.

Nano-thermometers show first temperature response differences within living cells

Denver, CO | Posted on August 29th, 2011

Using a modern version of open-wide-and-keep-this-under-your-tongue, scientists today reported taking the temperature of individual cells in the human body, and finding for the first time that temperatures inside do not adhere to the familiar 98.6 degree Fahrenheit norm. They presented the research at the 242nd National Meeting & Exposition of the American Chemical Society (ACS), being held here this week.

Haw Yang and Liwei Lin, who collaborated on the research, did not use a familiar fever thermometer to check the temperature of cells, the 100 trillion or so microscopic packages of skin, nerve, heart, liver and other material that make up the human body. Cells are so small that almost 60,000 would fit on the head of a common pin. Yang is with Princeton University and Lin is with the University California-Berkeley.

"We used 'nano-thermometers'," Yang explained. "They are quantum dots, semiconductor crystals small enough to go right into an individual cell, where they change color as the temperature changes. We used quantum dots of cadmium and selenium that emit different colors (wavelengths) of light that correspond to temperature, and we can see that as a color change with our instruments."

Yang said that information about the temperatures inside cells is important, but surprisingly lacking among the uncountable terabytes of scientific data available today.

"The inside of a cell is so complicated, and we know very little about it," he pointed out. "When one thinks about chemistry, temperature is one of the most important physical factors that can change in a chemical reaction. So, we really wanted to know more about the chemistry inside a cell, which can tell us more about how the chemistry of life occurs."

Scientists long have suspected that temperatures vary inside individual cells. Yang explained that thousands of biochemical reactions at the basis of life are constantly underway inside cells. Some of those reactions produce energy and heat. But some cells are more active than others, and the unused energy is discharged as heat. Parts of individual cells also may be warmer because they harbor biochemical power plants termed mitochondria for producing energy.

The researchers got that information by inserting the nano-thermometers into mouse cells growing in laboratory dishes. They found temperature differences of a few degrees Fahrenheit between one part of some cells and another, with parts of cells both warmer and cooler than others. Their temperature measurements are not yet accurate enough to give an exact numerical figure. Yang's team also intentionally stimulated cells in ways that boosted the biochemical activity inside cells and observed temperature changes.

Yang says that those temperature changes may have body-wide impacts in determining health and disease. Increases in temperature inside a cell, for instance, may change the way that the genetic material called DNA works, and thus the way that the genes, which are made from DNA, work. Changing the temperature will also change how protein molecular machines operate. At higher temperatures, some proteins may become denatured, shutting down production.

"With these nano thermometer experiments, I believe we are the first to show that the temperature responses inside individual living cells are heterogeneous — or different," said Yang. "This leads us to our next hypothesis, which is that cells may use differences in temperature as a way to communicate."

Yang's team is now conducting experiments to determine what regulates the temperature inside individual cells. One goal is to apply the information in improving prevention, diagnosis and treatment of diseases.

####

About American Chemical Society (ACS)
The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

303-228-8532 (Aug. 25-Sept. 1)
202-872-6042 (Before Aug. 25)

Michael Woods

303-228-8532 (Aug. 25-Sept. 1)
202-872-6293 (Before Aug. 25)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

Research partnerships

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project