Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-thermometers show first temperature response differences within living cells

Abstract:
Localized, transient temperature responses inside single living cells upon external chemical and mechanical stresses have been confirmed by using quantum dots as nano thermometers. Photoluminescence spectra maps from endocytosed quantum dots were used to reveal intra-cellular heat generation in NIH/3T3 cells following Ca2+-stress and cold-shock tests. The in-situ observation of inhomogeneous thermogenesis could lead to broad understanding of biological mechanisms in energy generation/conversion and health-related metabolism processes.

Nano-thermometers show first temperature response differences within living cells

Denver, CO | Posted on August 29th, 2011

Using a modern version of open-wide-and-keep-this-under-your-tongue, scientists today reported taking the temperature of individual cells in the human body, and finding for the first time that temperatures inside do not adhere to the familiar 98.6 degree Fahrenheit norm. They presented the research at the 242nd National Meeting & Exposition of the American Chemical Society (ACS), being held here this week.

Haw Yang and Liwei Lin, who collaborated on the research, did not use a familiar fever thermometer to check the temperature of cells, the 100 trillion or so microscopic packages of skin, nerve, heart, liver and other material that make up the human body. Cells are so small that almost 60,000 would fit on the head of a common pin. Yang is with Princeton University and Lin is with the University California-Berkeley.

"We used 'nano-thermometers'," Yang explained. "They are quantum dots, semiconductor crystals small enough to go right into an individual cell, where they change color as the temperature changes. We used quantum dots of cadmium and selenium that emit different colors (wavelengths) of light that correspond to temperature, and we can see that as a color change with our instruments."

Yang said that information about the temperatures inside cells is important, but surprisingly lacking among the uncountable terabytes of scientific data available today.

"The inside of a cell is so complicated, and we know very little about it," he pointed out. "When one thinks about chemistry, temperature is one of the most important physical factors that can change in a chemical reaction. So, we really wanted to know more about the chemistry inside a cell, which can tell us more about how the chemistry of life occurs."

Scientists long have suspected that temperatures vary inside individual cells. Yang explained that thousands of biochemical reactions at the basis of life are constantly underway inside cells. Some of those reactions produce energy and heat. But some cells are more active than others, and the unused energy is discharged as heat. Parts of individual cells also may be warmer because they harbor biochemical power plants termed mitochondria for producing energy.

The researchers got that information by inserting the nano-thermometers into mouse cells growing in laboratory dishes. They found temperature differences of a few degrees Fahrenheit between one part of some cells and another, with parts of cells both warmer and cooler than others. Their temperature measurements are not yet accurate enough to give an exact numerical figure. Yang's team also intentionally stimulated cells in ways that boosted the biochemical activity inside cells and observed temperature changes.

Yang says that those temperature changes may have body-wide impacts in determining health and disease. Increases in temperature inside a cell, for instance, may change the way that the genetic material called DNA works, and thus the way that the genes, which are made from DNA, work. Changing the temperature will also change how protein molecular machines operate. At higher temperatures, some proteins may become denatured, shutting down production.

"With these nano thermometer experiments, I believe we are the first to show that the temperature responses inside individual living cells are heterogeneous — or different," said Yang. "This leads us to our next hypothesis, which is that cells may use differences in temperature as a way to communicate."

Yang's team is now conducting experiments to determine what regulates the temperature inside individual cells. One goal is to apply the information in improving prevention, diagnosis and treatment of diseases.

####

About American Chemical Society (ACS)
The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

303-228-8532 (Aug. 25-Sept. 1)
202-872-6042 (Before Aug. 25)

Michael Woods

303-228-8532 (Aug. 25-Sept. 1)
202-872-6293 (Before Aug. 25)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanomedicine

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Nanotechnology Treatment Found to Inhibit Mesothelioma Tumor Growth November 16th, 2016

Sensors

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Events/Classes

IEDM: Leti CEO Marie Semeria to Give Opening-day Keynote on Impact of ‘Hyperconnectivity’ and IoT: Speech to Portray Key Role Nonprofit Research and Technology Organizations Play in Making Technology More Efficient and Ensuring Safety and Security November 29th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

IEDM: CEO Marie Semeria to Deliver Opening Day Keynote at IEDM 2016; Institute to Present 13 Papers November 17th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project