Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > John Hopkins University sends students to imec for summer research on biomedical devices and jointly presents first results on ‘nanoscale origami’

Figure JHU_1: Scanning electron microscopy (SEM) images of the patterns (a-hollow squares; c-alphabet; d-dice-like; e-f-g-SSRs) and folded cubes.
Figure JHU_1: Scanning electron microscopy (SEM) images of the patterns (a-hollow squares; c-alphabet; d-dice-like; e-f-g-SSRs) and folded cubes.

Abstract:
This summer, imec welcomed 4 students from John Hopkins University (JHU), a world-class university in Baltimore, US, for a research internship of 10 weeks in the field of bioelectronics. These internships coincide with the announcement of a scientific story on nanoscale origami that has resulted from the internship of the first JHU visiting student in the summer of 2009 with a follow-on program last year. In this work, an approach is presented that allows generating precisely patterned polyhedral nanostructures, envisaged for optical and biosensing applications.

John Hopkins University sends students to imec for summer research on biomedical devices and jointly presents first results on ‘nanoscale origami’

Leuven, Belgium and Baltimore, MD | Posted on August 26th, 2011

JHU-imec exchange project
The students - both graduate and undergraduate - learn to design, fabricate and test a wide range of biomedical devices at imec. One of the internships is part of a collaboration that is ongoing for two years. In January 2012, the first student from imec will have the unique opportunity to work with researchers from the Institute for Nanobiotechnology at John Hopkins University. The overall exchange project is enabled by the International Research Experience for Students (IRES) program, which is funded by the National Science Foundation. These internships are very valuable as they contribute to the learning experience of the students and enrich the research activities of both imec and JHU. Besides this project, imec has an agreement with Olin College, US, to exchange students for intensive internships at imec or Olin, and has plans to extend its collaboration with other top universities and institutes in the US.

You can view here [link naar filmpje] how this year's students experience their internship at imec.

In addition, we present a scientific story on ‘nanoscale origami' that has resulted from the internship of the first JHU visiting student, Michael Keung, who worked at imec in 2009 and 2010. The work has been published in a special issue of the journal Small, vol. 7, n°14, July 2011, and an image from the paper was selected as the inside cover image. The paper results from collaboration between imec and David Gracias' group at John Hopkins University. Michael Keung has since completed his M.S. in Engineering.

‘Nanoscale origami' enables the creation of 3D nanostructured devices for optics and biosensing
An origami-inspired approach is presented that allows generating precisely patterned polyhedral nanostructures. The method is based on the nanoscale self-folding of samples that have been patterned using electron-beam (e-beam) lithography. The nanoscale origami approach can greatly augment the capabilities of miniaturized optical devices and can be used for applications in biosensing. The technique has been demonstrated by the creation of structures with optically active split-ring resonator (SRR) patterns.

The novel approach allows precisely patterning optical or electronic elements in two dimensions and subsequently folding them up into three dimensions - just like the ancient Japanese art of paper folding. Transforming 2D patterns into 3D patterns presents a major advantage as compared to existing 3D nanostructures which have only very limited surface patterns. The method allows the creation of various polyhedral nanostructures with a versatility in the types of patterns, and are envisaged for optical and biosensing applications.

The overall process flow consists of first patterning in 2D the optically or electronically relevant features by using e-beam lithography and lift-off processes. After patterning, subsequent steps of e-beam lithography are used to define panels and hinges. Next, the structures are released from the substrate by using plasma etching of the underlying Si substrate. During etching, the heat generated by the exothermic etching process causes grain coalescence or reflow of the hinges. The hinges act as self-folds by generating a torque to rotate panels and create the 3D nanostructures. The fold angle can be controlled by tuning the plasma processing conditions. Sn was used as the hinge material and either Ni or Al2O3 was used as the panel material.

With this technique, geometric shapes, alphabets and three types of SRRs (with cube sizes 100nm and 500nm) have been patterned within a single Au layer. Patterns of Au SRRs are especially relevant for 3D optics. Reflection spectra of a folded nanocube with a single SRR patterned on each of the six faces was successfully collected by using infrared excitation. The expected polarization dependence is clearly observed. The researchers demonstrated another interesting functionality that consists in generating a unique plasmonic barcode on all faces. This allows seeing the orientation of the cube by optical probing and can be used as an optical gyroscope with plenty of opportunities for bioresearch. In the future, further experimentation is required to extend the nanoscale origami approach to other material combinations.

####

About IMEC
Imec performs world-leading research in nano-electronics and nano-technology. Its staff of more than 1,900 people includes over 500 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Indefinite Life Extension Activists Organize Online Demonstration February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Announcements

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE