Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Synchronized dynamic duos: The ability to control how magnetic vortices gyrate together has potential application in magnetic devices

Figure 1: The magnetic domains in a single ferromagnetic disk arrange into a vortex (left). When two disks are brought close together (right), the magnetic vortices begin to move together. Their motion can be in-phase (bottom two levels), or out of phase (top two). The vortex cores can also point in the same direction, or in opposite directions, leading to four possible types of coupled motion.
Figure 1: The magnetic domains in a single ferromagnetic disk arrange into a vortex (left). When two disks are brought close together (right), the magnetic vortices begin to move together. Their motion can be in-phase (bottom two levels), or out of phase (top two). The vortex cores can also point in the same direction, or in opposite directions, leading to four possible types of coupled motion.

Abstract:
Crystals can guide and control light and electricity by creating spatially periodic energy barriers. An electron (or photon) can pass through these barriers only when it has a particular energy, allowing engineers to create switches and other electronic devices. Now, a team of researchers from Japan and India has taken a key step towards using crystals to control waves of magnetic orientation (magnons)1, with the potential to create magnetic analogues to electronic and optical devices, including memory devices and transistors.

Synchronized dynamic duos: The ability to control how magnetic vortices gyrate together has potential application in magnetic devices

Japan | Posted on August 26th, 2011

Led by YoshiChika Otani at the RIKEN Advanced Science Institute, Wako, the researchers began by manufacturing tiny disks of ferromagnetic material. The magnetic domains of such disks arrange into vortices (Fig. 1, left), which consist of in-plane circular patterns surrounding a core with out-of-plane magnetization. By applying an alternating current with a particular frequency to such disks, physicists can excite the vortices into a gyrating motion, which they can detect by measuring the voltage across a disk.

Otani and his colleagues found that a current oscillating at 352 megahertz could set the vortex of a single disk into motion. When they brought a second disk near the first one, however, this single resonant frequency split into two: one was lower than the original frequency, and the other was higher. This kind of resonance splitting is characteristic of any pair of interacting oscillators with similar energies, whether it be two molecules that are covalently bonded to each other, or two swinging pendula.

The frequency splitting observed in the researchers' pair of disks indicated that the magnetic vortices in each were coupled together, even though the current was driving one disk only. The researchers showed through numerical simulation that the lower-frequency resonance corresponded to the two vortices rotating in phase with each other; the higher-frequency resonance corresponded to an out-of-phase rotation. Depending on whether the core polarizations of the two disks were pointing in the same or opposite directions, Otani and colleagues also observed different frequency pairs. This led to four distinct resonant frequencies in all (Fig. 1, right).

The researchers could control the differences among the four resonant frequencies by changing the distance between disks, as well as the disk sizes. By demonstrating controllable pairing between adjacent magnetic vortices, the results point the way to more complex chains, lattices and crystals in which magnons can be finely controlled, says Otani. "Our next target is to engineer a structure in which macroscopic spin waves propagate only along particular crystallographic directions."

The corresponding author for this highlight is based at the Quantum Nano-Scale Magnetics Team, RIKEN Advanced Science Institute

####

About Riken Research
RIKEN is one of Japanís largest research organizations, with more than 3,000 scientists involved in leading research in centers and institutes across Japan and around the world.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Physics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Superconductivity: After the scenario, the staging August 20th, 2016

Superconductivity: After the scenario, the staging August 20th, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Chip Technology

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Discoveries

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Announcements

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic