Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Out-of-shape nuclei: Adding neutrons to synthetic atoms can drastically alter the shape of their nuclei and affect their stability

Figure 1: Adding neutrons to the nucleus of a zirconium atom changes its shape from spherical to oblate.

Hiroyoshi Sakurai
Figure 1: Adding neutrons to the nucleus of a zirconium atom changes its shape from spherical to oblate.

Hiroyoshi Sakurai

Abstract:
To probe the evolution of atomic nuclei with different shape —a factor which affects atomic stability—a large team of international researchers has added neutrons to zirconium atoms and revealed the possibility of very unusual shapes1. "The shape of a nucleus reflects the symmetry of its quantum state," explains team member Hiroyoshi Sakurai from the RIKEN Nishina Center for Accelerator-Based Science in Wako. This result helps us to understand how many neutrons are needed for the most stable nuclei.

Out-of-shape nuclei: Adding neutrons to synthetic atoms can drastically alter the shape of their nuclei and affect their stability

Japan | Posted on August 26th, 2011

Most atoms can exist in one of several alternative forms called isotopes, depending on the number of neutrons in their core. Naturally occurring, stable, atoms tend to have between 1 and 1.5 neutrons per proton. However, synthetically generated atoms with higher neutron-proton ratios can reveal much about changes within an atomic nucleus.

The protons and neutrons in a nucleus usually form arrangements of concentric spherical shells. In some cases, however, the outermost particles exist further from the center than normal. This can lead to nuclei that are wider than they are long. Just as atoms with a specific number of protons can exist as different isotopes, atoms with a specific number of protons and neutrons can exist as different nuclear isomers—nuclei with different shapes. "By measuring the shape of nuclei, we are probing the internal symmetry in the nucleus—the so-called shell structure," explains Sakurai.

At the Radioactive Isotope Beam Factory in Japan, operated jointly by RIKEN and The University of Tokyo, the researchers experimented with zirconium atoms that have 40 protons and, in their stable form, between 50 and 52 neutrons. They created zirconium atoms with as many as 68 neutrons through collisions between uranium and beryllium atoms. After filtering isotopes from the remnants of the collision, they measured the rate of decay of beta and gamma radiation emitted by the quickly decaying, unstable synthetic atoms. The measurements showed that these nuclei changed shape from spherical to oblate (Fig. 1).

The degree of deformation of the zirconium nuclei increased as Sakurai and colleagues added more neutrons, but this trend stopped when they reached 64 neutrons. This result raises the intriguing prospect of a tetrahedral-shaped isomer of zirconium-108—an isotope with 68 neutrons—which has been predicted previously by other researchers. However, further work is needed to verify this.

"We next hope to gain further insight into the evolution of nuclear isomers by extending our study to strontium atoms," Sakurai says.

The corresponding author for this highlight is based at the Radioactive Isotope Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science

####

About Riken Research
RIKEN is one of Japan’s largest research organizations, with more than 3,000 scientists involved in leading research in centers and institutes across Japan and around the world.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Physics

Thinnest feasible membrane produced April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Discoveries

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE