Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Out-of-shape nuclei: Adding neutrons to synthetic atoms can drastically alter the shape of their nuclei and affect their stability

Figure 1: Adding neutrons to the nucleus of a zirconium atom changes its shape from spherical to oblate.

Hiroyoshi Sakurai
Figure 1: Adding neutrons to the nucleus of a zirconium atom changes its shape from spherical to oblate.

Hiroyoshi Sakurai

Abstract:
To probe the evolution of atomic nuclei with different shape —a factor which affects atomic stability—a large team of international researchers has added neutrons to zirconium atoms and revealed the possibility of very unusual shapes1. "The shape of a nucleus reflects the symmetry of its quantum state," explains team member Hiroyoshi Sakurai from the RIKEN Nishina Center for Accelerator-Based Science in Wako. This result helps us to understand how many neutrons are needed for the most stable nuclei.

Out-of-shape nuclei: Adding neutrons to synthetic atoms can drastically alter the shape of their nuclei and affect their stability

Japan | Posted on August 26th, 2011

Most atoms can exist in one of several alternative forms called isotopes, depending on the number of neutrons in their core. Naturally occurring, stable, atoms tend to have between 1 and 1.5 neutrons per proton. However, synthetically generated atoms with higher neutron-proton ratios can reveal much about changes within an atomic nucleus.

The protons and neutrons in a nucleus usually form arrangements of concentric spherical shells. In some cases, however, the outermost particles exist further from the center than normal. This can lead to nuclei that are wider than they are long. Just as atoms with a specific number of protons can exist as different isotopes, atoms with a specific number of protons and neutrons can exist as different nuclear isomers—nuclei with different shapes. "By measuring the shape of nuclei, we are probing the internal symmetry in the nucleus—the so-called shell structure," explains Sakurai.

At the Radioactive Isotope Beam Factory in Japan, operated jointly by RIKEN and The University of Tokyo, the researchers experimented with zirconium atoms that have 40 protons and, in their stable form, between 50 and 52 neutrons. They created zirconium atoms with as many as 68 neutrons through collisions between uranium and beryllium atoms. After filtering isotopes from the remnants of the collision, they measured the rate of decay of beta and gamma radiation emitted by the quickly decaying, unstable synthetic atoms. The measurements showed that these nuclei changed shape from spherical to oblate (Fig. 1).

The degree of deformation of the zirconium nuclei increased as Sakurai and colleagues added more neutrons, but this trend stopped when they reached 64 neutrons. This result raises the intriguing prospect of a tetrahedral-shaped isomer of zirconium-108—an isotope with 68 neutrons—which has been predicted previously by other researchers. However, further work is needed to verify this.

"We next hope to gain further insight into the evolution of nuclear isomers by extending our study to strontium atoms," Sakurai says.

The corresponding author for this highlight is based at the Radioactive Isotope Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science

####

About Riken Research
RIKEN is one of Japan’s largest research organizations, with more than 3,000 scientists involved in leading research in centers and institutes across Japan and around the world.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Laboratories

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project