Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles can hinder intracellular transport

Tore-Geir Iversen of the Centre of Cancer Biomedicine at the Norwegian Radium Hospital. (Photo: Private)
Tore-Geir Iversen of the Centre of Cancer Biomedicine at the Norwegian Radium Hospital. (Photo: Private)

Abstract:
Scientists at the Centre of Cancer Biomedicine at the Norwegian Radium Hospital are the first to show that uptake and accumulation of nanoparticles in cells can disrupt important intracellular transport pathways.

Nanoparticles can hinder intracellular transport

Norway | Posted on August 24th, 2011

The researchers discovered that the nanoparticles interrupt the transport of vital substances in and out of a cell, causing undesirable changes in the cell's physiology and disrupting normal cell functioning.

The likely explanation is that nanoparticles of a certian size either cannot enter vi the the very thin tubes in the endosomes or they lodge inside and plug it up."

New medicines containing nanoparticles are proven to have clear curative value, but complications can sometimes arise. Researchers at the Norwegian Radium Hospital in Oslo have shown how nanoparticles can interfere with the transport of vital substances in cells.

Cells affected

Basic research on cell cultures, such as that carried out at the Norwegian Radium Hospital, clearly demonstrates that nanoparticles affect the cells.

After four years of experimentation Senior Scientist Tore-Geir Iversen and his colleagues are zeroing in on how nanoparticles behave in cells. Dr Iversen's group is the first to show that uptake and accumulation of nanoparticles in cells can disrupt important intracellular transport pathways.

The project has received funding under two of the Research Council of Norway's Large-scale Programmes: Functional Genomics in Norway (FUGE) and Nanotechnology and New Materials (NANOMAT). The findings were first published in the US journal Nano Letters.

The method
Researchers working on the project have studied nanoparticles 30-100 nanometres in diameter, a typical size used for delivering medicines and DNA into cells.

The nanoparticles were dyed so as to fluoresce (light up) when irradiated by a laser. By dying various particles with different fluorescent substances and irradiating them with different laser wavelengths, the researchers were able to locate the various particles within cells using a microscope.

One much-used particle type is fluorescent quantum dots, which light up when irradiated by light of wavelengths approaching the ultraviolet range. Another type is iron oxide particles, which bind to fluorescent substances so that researchers can study their uptake and where they are transported within cells. Iron oxide particles have been used in magnetic resonance imaging (MRI) diagnostics for 20 years.

The results

Trials have shown that a protein that transports iron into a cell is taken up in the usual way even when bound to a nanoparticle. However, while 99% of a protein not bound to a nanoparticle will make its way out of the cell and can be recycled, a nanoparticle-bound protein remains in the cell.

There it accumulates in the endosomes, which have an important function in the cell's internal transport system. Endosomes are bubble-like compartments encased in a membraneThus the researchers discovered that the nanoparticles interrupt the transport of vital substances in and out of a cell, causing undesirable changes in the cell's physiology and disrupting normal cell functioning.

"The likely explanation," says Dr Iversen, "is that the protein has to enter through very thin tubes (called tubules) in the endosomes. Nanoparticles of the size we are researching either cannot enter the tubule or they lodge inside and plug it up."

This is critical knowledge when it comes to designing future particles.

Cautions against jumping to conclusions

The Norwegian research confirms that there are no shortcuts to developing a medicine that targets diseased tissue. Even when a protein itself is targeted and has a positive effect, that same protein bound to a nanoparticle may be less effective - or perhaps even harmful.

"We find it frustrating that a number of international scientific articles confidently conclude, on poorly verified grounds, that nanoparticles effectively transport medicines to the nucleus," laments Dr Iversen. He and his colleagues recently published a review article in the journals Nanomedicine and Nano Today that details their criticisms of such claims.

"Hopefully our reviews will lead to higher quality in future studies of uptake in the cells."

Uncertain risks

Tore-Geir Iversen is concerned that the pharmaceutical industry is rushing its product development.

If a nanomedicine is used to extend the life of a patient with terminal cancer, then the accumulation of nanoparticles might be insignificant, he reasons. But when a medicine is developed to treat a chronic disorder, so that patients will take that medicine over years, then pharmaceutical companies should have to demonstrate that their medicine is fully degraded and excreted from the body.

The challenge is that even clinical studies carried out on patients with chronic diseases will not provide the whole truth. The negative effects of a nanomedicine may not show up in a short-term study, but patients who use that medicine over many years to fight a chronic disorder may end up exhibiting an over-occurrence of certain cancer types due to the nanoparticles being incompletely excreted, disrupting transport in the body's cells.

"We shouldn't skip over understanding basic cell biology and go straight to clinical trials or animal trials," cautions Dr Iversen.

Research ahead

Next, the Norwegian Radium Hospital researchers want to find out whether nanoparticles smaller than 30 nanometres in diameter will navigate the transport system any better.

Furthermore, in close cooperation with materials researchers they aim at creating particles with sizes and surface compositions that allow them to stably circulate in the blood stream and interact specifically with their target cells yet ensures they can be broken down within the cells.
The cell biologists will also collaborate with immunologists before moving on to animal trials.

How nanoparticles are transported into cells

Nanoparticles, proteins and other macromolecules are taken up in the body's cells via various mechanisms. The nanoparticles are first encapsulated in fatty bubbles, called vesicles, which form on the cell surface.

These vesicles merge with larger vesicles known as sorting endosomes, which can then mature into multivesicular bodies (MVBs). These MVBs, in turn, merge with lysosomes, where proteins and other macromolecules are broken down by proteases and other enzymes. Nanoparticles can be transported out of the cell via either sorting endosomes or recycling endosomes.

####

For more information, please click here

Contacts:
Else Lie
+47 22 03 70 00

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project