Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Demonstrates First Quantum 'Entanglement' of Ions Using Microwaves

Gold ion trap on aluminum nitride backing. In NIST microwave quantum computing experiments, two ions hover above the middle of the square gold trap, which measures 7.4 millimeters on a side. Scientists manipulate and entangle the ions using microwaves fed into wires on the trap from the three thick electrodes at the lower right.
Credit: Y. Colombe/NIST
Gold ion trap on aluminum nitride backing. In NIST microwave quantum computing experiments, two ions hover above the middle of the square gold trap, which measures 7.4 millimeters on a side. Scientists manipulate and entangle the ions using microwaves fed into wires on the trap from the three thick electrodes at the lower right.

Credit: Y. Colombe/NIST

Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have, for the first time, linked the quantum properties of two separated ions (electrically charged atoms) by manipulating them with microwaves instead of the usual laser beams. The feat raises the possibility of replacing today's complex, room-sized quantum computing "laser parks" with miniaturized, commercial microwave technology similar to that used in smart phones.

NIST Demonstrates First Quantum 'Entanglement' of Ions Using Microwaves

Boulder, CO | Posted on August 17th, 2011

Microwaves have been used in past experiments to manipulate single ions, but the NIST group is the first to position microwaves sources close enough to the ions—just 30 micrometers away—and create the conditions enabling entanglement, a quantum phenomenon expected to be crucial for transporting information and correcting errors in quantum computers.

Described in the August 11, 2011, issue of Nature,* the experiments integrate wiring for microwave sources directly on a chip-sized ion trap and use a desktop-scale table of lasers, mirrors and lenses that is only about one-tenth of the size previously required. Low-power ultraviolet lasers still are needed to cool the ions and observe experimental results but might eventually be made as small as those in portable DVD players. Compared to complex, expensive laser sources, microwave components could be expanded and upgraded more easily to build practical systems of thousands of ions for quantum computing and simulations.

"It's conceivable a modest-sized quantum computer could eventually look like a smart phone combined with a laser pointer-like device, while sophisticated machines might have an overall footprint comparable to a regular desktop PC," says NIST physicist Dietrich Leibfried, a co-author of the new paper.

Quantum computers would harness the unusual rules of quantum physics to solve certain problems—such as breaking today's most widely used data encryption codes—that are currently intractable even with supercomputers. A nearer-term goal is to design quantum simulations of important scientific problems, to explore quantum mysteries such as high-temperature superconductivity, the disappearance of electrical resistance in certain materials when sufficiently chilled.

Ions are a leading candidate for use as quantum bits (qubits) to hold information in a quantum computer. Although other promising candidates for qubits—notably superconducting circuits, or "artificial atoms"—are manipulated on chips with microwaves, ion qubits are at a more advanced stage experimentally in that more ions can be controlled with better accuracy and less loss of information.

The use of microwaves reduces errors introduced by instabilities in laser beam pointing and power as well as laser-induced spontaneous emissions by the ions. However, microwave operations need to be improved to enable practical quantum computations or simulations. The NIST researchers achieved entanglement 76 percent of the time, well above the minimum threshold of 50 percent defining the onset of quantum properties but not yet competitive with the best laser-controlled operations at 99.3 percent.

The research was supported by the Intelligence Advanced Research Projects Activity, Office of Naval Research, Defense Advanced Research Projects Agency, National Security Agency and Sandia National Laboratories.

For more details, see the NIST Aug. 11 news announcement "NIST Physicists 'Entangle' Two Atoms Using Microwaves for the First Time" at www.nist.gov/pml/div688/microwave-quantum-081011.cfm.

* C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried and D.J. Wineland. Microwave quantum logic gates for trapped ions. Nature. Aug. 11, 2011.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Quantum Computing

Dartmouth team creates new method to control quantum systems May 24th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Discoveries

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic