Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Smart” polymer capsules for dual-responsive drug delivery

Abstract:
Targeted drug delivery has grown into an extensively studied research field exploring methods which allow selective or protected drug/tissue interactions. Triggered release systems based on the presence of physiological stimuli, such as pH, enzymes and redox-potential, have recently emerged for advanced therapeutic delivery applications.

"Smart” polymer capsules for dual-responsive drug delivery

Melbourne, Australia | Posted on August 11th, 2011

Professor Frank Caruso and co-workers (University of Melbourne) have demonstrated how several independent release mechanisms can be brought together and synergistically function to tune cargo release profiles. They were able to generate a novel class of polymeric nano/microcapsules with dual-responsive release mechanisms via the versatile layer-by-layer technique and click chemistry.

These capsules could release cargo specifically in pH conditions that mimic intracellular acidic compartments. Further, the synergistic effects of pH and redox-potential allowed for rapid and efficient cargo release, even for extremely low intracellular reducing agent concentrations. The simple and efficient combination of the layer-by-layer technique and click chemistry for synthesizing "big-to-small" capsules with dual stimuli-responsive cargo release mechanisms broadens the possibilities for the design of "smart" capsules for intracellular therapeutic and diagnostic applications.

####

For more information, please click here

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

K. Liang et al, Adv. Mater. ; DOI: 10.1002/adma.201101690

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanomedicine

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project