Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Counting Graphene Sheets Spread over a Large Area

Abstract:
A simple way to identify the number of graphene sheets on a substrate, even over a large area, is shown by US researchers.

Counting Graphene Sheets Spread over a Large Area

Riverside, CA | Posted on August 11th, 2011

Graphene is the much-loved material of-the-moment; the most recent Nobel Prize for physics was awarded to Andre Geim and Kostya Novoselov for work in this area and many researchers are following in their footsteps to investigate the exciting electric, optical, and mechanical properties of graphene. But even just identifying that you have produced a graphene sheet, and how many you have made, can be tricky.

Industrial production of graphene is usually by chemical vapor deposition (CVD) rather than by the mechanical exfoliation method (tearing off sheets from a block of graphite) much used in early work. CVD-grown sheets can be relatively very large, which is good for many industrial applications, but this method does induce some defects and wrinkles which can be hard to spot, as well as producing multiple layers of sheets. Raman and atomic force microscopy can be used to count sheets on silica or silicon but these techniques call for calibration and can only cover a small area at a time; this is not ideal for the large areas of graphene produced by CVD. As its uses expand, graphene is being made and used on a variety of substrates so it would be useful to have a method of counting that is not confined to use on only a small number of surfaces.

Advertisement




Researchers at University of California, Riverside, USA, led by Cengiz Ozkan and Mihrimah Ozkan have developed a method for quick and easy identification of layer thickness and uniformity of entire large-area graphene sheets on arbitrary substrates. They exploit the fact that graphene quenches fluorescence whereas most substrates do not, and coat an area of graphene on a surface with a fluorescent polymer dye to allow visualization with a simple fluorescence microscope. Straightforward data processing of this input identifies not only the presence but also the number of layers of graphene present in any one area. Uniformity of the sample and defects can also be assessed by this route.

The scientists went on to test their method by looking at different ways of transferring graphene from one substrate to another, and the resulting quality of the final sheets. They were able to tell the most effective method used to transfer graphene and preserve sheet quality.

Because this method is so simple, reproducible, and applicable to large areas of graphene, the authors expect it to be quickly taken up by industrial manufacturers and users of graphene, who may use it to make anything from solar cells to thermal heat sinks.

####

For more information, please click here

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

J. R. Kyle et al., Small, ; DOI: 10.1002/smll.201100263

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Graphene/ Graphite

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Discoveries

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project