Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Counting Graphene Sheets Spread over a Large Area

Abstract:
A simple way to identify the number of graphene sheets on a substrate, even over a large area, is shown by US researchers.

Counting Graphene Sheets Spread over a Large Area

Riverside, CA | Posted on August 11th, 2011

Graphene is the much-loved material of-the-moment; the most recent Nobel Prize for physics was awarded to Andre Geim and Kostya Novoselov for work in this area and many researchers are following in their footsteps to investigate the exciting electric, optical, and mechanical properties of graphene. But even just identifying that you have produced a graphene sheet, and how many you have made, can be tricky.

Industrial production of graphene is usually by chemical vapor deposition (CVD) rather than by the mechanical exfoliation method (tearing off sheets from a block of graphite) much used in early work. CVD-grown sheets can be relatively very large, which is good for many industrial applications, but this method does induce some defects and wrinkles which can be hard to spot, as well as producing multiple layers of sheets. Raman and atomic force microscopy can be used to count sheets on silica or silicon but these techniques call for calibration and can only cover a small area at a time; this is not ideal for the large areas of graphene produced by CVD. As its uses expand, graphene is being made and used on a variety of substrates so it would be useful to have a method of counting that is not confined to use on only a small number of surfaces.

Advertisement




Researchers at University of California, Riverside, USA, led by Cengiz Ozkan and Mihrimah Ozkan have developed a method for quick and easy identification of layer thickness and uniformity of entire large-area graphene sheets on arbitrary substrates. They exploit the fact that graphene quenches fluorescence whereas most substrates do not, and coat an area of graphene on a surface with a fluorescent polymer dye to allow visualization with a simple fluorescence microscope. Straightforward data processing of this input identifies not only the presence but also the number of layers of graphene present in any one area. Uniformity of the sample and defects can also be assessed by this route.

The scientists went on to test their method by looking at different ways of transferring graphene from one substrate to another, and the resulting quality of the final sheets. They were able to tell the most effective method used to transfer graphene and preserve sheet quality.

Because this method is so simple, reproducible, and applicable to large areas of graphene, the authors expect it to be quickly taken up by industrial manufacturers and users of graphene, who may use it to make anything from solar cells to thermal heat sinks.

####

For more information, please click here

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

J. R. Kyle et al., Small, ; DOI: 10.1002/smll.201100263

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Solar/Photovoltaic

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE