Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Optical properties of nanostructured materials: a review

Abstract:
J. Nanophoton. 5, 052502 (Aug 10, 2011) dx.doi.org/10.1117/1.3609266

François Flory
Ecole Centrale Marseille, Technopôle de château Gombert, 38 rue Joliot Curie, 13451 Marseille cedex 13, France

Ludovic Escoubas
Aix-Marseille University, Institut Matériaux Microélectronique Nanosciences de Provence IM2NP CNRS UMR 6242, Campus de Saint-Jérôme, Avenue Escadrille Normandie Niemen Service 231, F-13397 Marseille Cedex 20, France

Gérard Berginc
Thalès Optronique S.A., 2 Avenue Gay-Lussac, 78995 Elancourt Cedex, France

Optical properties of nanostructured materials: a review

University Park, PA | Posted on August 11th, 2011

Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications should be forthcoming in the near future in this field of research.

####

For more information, please click here

Contacts:
Akhlesh Lakhtakia, Ph.D., D.Sc.
The Charles G. Binder (Endowed) Professor of Engineering Science and Mechanics
Pennsylvania State University, University Park, PA 16802-6812, USA
Tel: +1-814-863-4319/0554

www.esm.psu.edu/~axl4

Copyright © Pennsylvania State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Physics

Cooling with the coldest matter in the world November 24th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Quantum Dots/Rods

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE