Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > No Batteries Required: Automobile Instruments Harvest Energy from Road Vibration to Keep Sensors Running

Provided/MicroGen Systems
Prototype chip from MicroGen Systems includes four piezoelectric power sources. The devices can shrink further as circuits require less power.
Provided/MicroGen Systems
Prototype chip from MicroGen Systems includes four piezoelectric power sources. The devices can shrink further as circuits require less power.

Abstract:
Your little deuce coupe, hot rod Lincoln or pink Cadillac gets a small boost of energy, as tiny sensors in your automobile can now harvest constant power from road vibration instead of replacing batteries.

No Batteries Required: Automobile Instruments Harvest Energy from Road Vibration to Keep Sensors Running

Ithaca, NY | Posted on August 10th, 2011

MicroGen Systems Inc., of Ithaca, and Cornell University's Cornell Nanoscale Facility, have collaborated to develop battery-free sensors that can operate in anything that spins, rolls, jiggles or shakes, like car tires and clothing dryers.

The battery device is a tiny sheet of a piezoelectric material that generates electricity when mounted on a shock-resistant base and it is flexed. Vibration like a spinning automobile wheel causes the tiny flap to swing back and forth, generating current that charges an adjacent thin-film battery. The prototype - about the size of a quarter - puts out up to 200 microwatts. As circuits become smaller and need less power, the device can shrink with them.

Several companies have already expressed interest in MicroGen's energy harvester technology.

Robert Andosca, president of MicroGen was first drawn to New York by research funding made available by Sen. Charles Schumer (D-N.Y.). Paul Mutolo, director of external partnerships for the university's Energy Materials Center (emc2), helped bring MicroGen to Ithaca, to be close to Cornell.

To refine the technology, Andosca needed the state-of-the-art facilities at the Cornell Nanoscale Facility. "There are 17 of these facilities in the country and Cornell's facility is one of the two best," says Andosca. Through the Energy Materials Center, MicroGen obtained startup funding from the New York State Foundation for Science, Technology and Innovation (NYSTAR) to support his work at the Cornell Nanoscale Facility. The funding comes from emc2's part in the NYS Center for Future Energy Systems and is targeted to assisting companies in the energy sector. The funding enabled him to build, test and redesign until he had a product that would meet the industry standard power level for wireless sensor units.

Now MicroGen is working with R. Bruce van Dover, professor of materials science and engineering, to refine the technology, particularly to develop a version that can withstand high temperatures, aiming for sensors in jet engines.

####

For more information, please click here

Contacts:
Blaine Friedlander

(607) 254-8093

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Automotive/Transportation

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Strategic Materials Conference 2018 Highlights “Materials Shaping the Future of Electronics” July 30th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project