Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > No Batteries Required: Automobile Instruments Harvest Energy from Road Vibration to Keep Sensors Running

Provided/MicroGen Systems
Prototype chip from MicroGen Systems includes four piezoelectric power sources. The devices can shrink further as circuits require less power.
Provided/MicroGen Systems
Prototype chip from MicroGen Systems includes four piezoelectric power sources. The devices can shrink further as circuits require less power.

Abstract:
Your little deuce coupe, hot rod Lincoln or pink Cadillac gets a small boost of energy, as tiny sensors in your automobile can now harvest constant power from road vibration instead of replacing batteries.

No Batteries Required: Automobile Instruments Harvest Energy from Road Vibration to Keep Sensors Running

Ithaca, NY | Posted on August 10th, 2011

MicroGen Systems Inc., of Ithaca, and Cornell University's Cornell Nanoscale Facility, have collaborated to develop battery-free sensors that can operate in anything that spins, rolls, jiggles or shakes, like car tires and clothing dryers.

The battery device is a tiny sheet of a piezoelectric material that generates electricity when mounted on a shock-resistant base and it is flexed. Vibration like a spinning automobile wheel causes the tiny flap to swing back and forth, generating current that charges an adjacent thin-film battery. The prototype - about the size of a quarter - puts out up to 200 microwatts. As circuits become smaller and need less power, the device can shrink with them.

Several companies have already expressed interest in MicroGen's energy harvester technology.

Robert Andosca, president of MicroGen was first drawn to New York by research funding made available by Sen. Charles Schumer (D-N.Y.). Paul Mutolo, director of external partnerships for the university's Energy Materials Center (emc2), helped bring MicroGen to Ithaca, to be close to Cornell.

To refine the technology, Andosca needed the state-of-the-art facilities at the Cornell Nanoscale Facility. "There are 17 of these facilities in the country and Cornell's facility is one of the two best," says Andosca. Through the Energy Materials Center, MicroGen obtained startup funding from the New York State Foundation for Science, Technology and Innovation (NYSTAR) to support his work at the Cornell Nanoscale Facility. The funding comes from emc2's part in the NYS Center for Future Energy Systems and is targeted to assisting companies in the energy sector. The funding enabled him to build, test and redesign until he had a product that would meet the industry standard power level for wireless sensor units.

Now MicroGen is working with R. Bruce van Dover, professor of materials science and engineering, to refine the technology, particularly to develop a version that can withstand high temperatures, aiming for sensors in jet engines.

####

For more information, please click here

Contacts:
Blaine Friedlander

(607) 254-8093

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Automotive/Transportation

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic