Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small molecules hit it big - new therapeutic approaches against viruses, bacteria, and cancer: Scientists from Freie Universität Berlin have identified small molecule inhibitors of cellular uptake

Abstract:
Scientists from Freie Universität Berlin and the NeuroCure Cluster of Excellence led by biochemist Volker Haucke in collaboration with colleagues from Australia and the Leibniz Institute for Molecular Pharmacology (FMP) in Berlin have developed small molecules that inhibit the internalization of important signaling molecules but also of pathogenic organisms such as the immunodeficiency virus (HIV) and bacteria into cells. These compounds inhibit the function of the cellular scaffold protein clathrin und could thereby serve as a starting point for novel therapeutic approaches for the treatment of cancer, viral or bacterial infections, or neurological disorders. These results were published in the latest issue of the prestigious journal Cell.

Small molecules hit it big - new therapeutic approaches against viruses, bacteria, and cancer: Scientists from Freie Universität Berlin have identified small molecule inhibitors of cellular uptake

Berlin, Germany | Posted on August 6th, 2011

The uptake of important signaling molecules such as growth factors but also communication within the nervous system depends on the intracellular scaffold protein clathrin. Clathrin is involved in the production of small only about 100 nm sized vesicles (a nanometer equals as little as 1/billion meter). These vesicles shuttle signaling molecules into the cell interior or serve as storage sites for the triggered release of transmitter in the nervous system. The scientists used small molecule compound libraries comprising about 20,000 different substances paired with medicinal chemistry-based synthesis to identify small molecules that specifically inhibit binding of clathtrin to its partner proteins. These compounds termed pitstops are able to prevent within minutes the uptake of signaling molecules, which stimulate cell growth and division, or the entry of human immunodeficiency virus (HIV) into cells. Using shiny fluorescent proteins the scientists could identify impaired dynamics of clathrin and its partners as the underlying reason for the internalization block. "Vesicle formation appears stalled as if you had put your cells into the freezer," explains Professor Haucke. Similar effects have been observed in lamprey and in cultured nerve cells from mice or rats treated with pitstops resulting in a block in vesicle reformation and neurotransmission. As many neurological disorders, such as epilepsy are caused by overexcitability of nerve cells dampening of neurotransmission by pitstops and like substances could open new avenues for the therapy of these diseases. "Clathrin-mediated uptake into cells is of such fundamental importance that with the development of these inhibitors we might be able to devise new concepts for the treatment of so far incurable cancers such as brain tumors - tumors whose growth depends on the internalization of signaling molecules, which promote cell division," explains NeuroCure scientist Volker Haucke.

Full bibliographic informationRole of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition
Volker Haucke et al.
Cell, Volume 146, Issue 3, 471-484, 5 August 2011
The article on the web www.cell.com/current

####

For more information, please click here

Contacts:
Kerrin Zielke


Prof. Dr. Volker Haucke
Institute of Chemistry and Biochemistry
Freie Universität Berlin
phone: +49-30/ 838–56922
e-mail:
www.fu-berlin.de/cellbio

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Nanomedicine

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Nanotubes that build themselves April 14th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project