Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Molecular Workbench Wins SPORE Award: NSF-funded project wins award for being an outstanding online educational resource

This is a screenshot of the Molecular Workbench in action. The Molecular Workbench uses visually stimulating simulations and activities that bring the atomic and molecular world to life.

Credit: The Concord Consortium
This is a screenshot of the Molecular Workbench in action. The Molecular Workbench uses visually stimulating simulations and activities that bring the atomic and molecular world to life.

Credit: The Concord Consortium

Abstract:
This June, the National Science Foundation (NSF)-funded Molecular Workbench won the Science Prize for Online Resources in Education (SPORE) for its contribution as an innovative tool for science education.

The Molecular Workbench Wins SPORE Award: NSF-funded project wins award for being an outstanding online educational resource

Arlington, VA | Posted on August 4th, 2011

The Molecular Workbench is an online, computational tool that provides digital models of atomic scale processes, using interactive lessons and simulations to model atomic and molecular processes that would otherwise be difficult to portray through static illustrations typically found in a textbook.

Science magazine awards the SPORE prize "to encourage innovation and excellence in education, as well as to encourage the use of high-quality on-line resources by students, teachers and the public."

Participants were judged by the editors of Science and a panel consisting of teachers and researchers in relevant fields. Winners were invited to write an essay describing their resources for publication in the magazine.

The world of atoms and molecules close-up

Imagine trying to represent the tiny world of atoms and molecules--how would a person actively and visually show processes at this level? How would he or she describe atoms and molecules in contexts ranging from physics to nanotechnology?

The Molecular Workbench answers these questions by using visually stimulating simulations and activities that bring the atomic and molecular world to life.

For instance, in a "self-assembly" simulation, students have the freedom to experiment with molecule positions, charges, temperatures and other variables, to discover the consequences when these variables are changed. Students can play back or re-run the simulations for further observation. Each lesson also provides embedded questions for students to reflect upon what they observed. Try a featured simulation here.

"The Molecular Workbench significantly lowers the barrier of learning obscure atomic-scale science," said Charles Xie, physicist and developer of the Molecular Workbench. "It allows instructors to bring the conceptual picture up front without intimidating their students with abstruse terminology or difficult mathematics. This focuses students on the idea, not the vocabulary or the math."

Most of the users are middle-school, high-school and college students. The Molecular Workbench allows them to "play" with different simulations related to physics, chemistry, biology, biotechnology and nanotechnology. So far, the software has over 800,000 downloads worldwide.

Unlike traditional ball-and-stick models often used for teaching molecules, the Molecular Workbench simulates processes and calculations in "real time." Students can instantaneously see what happens when they manipulate the conditions of the molecules and analyze the results.

"Our vision is that static illustrations should be replaced by visual, interactive simulations; exercises could use simulations to incorporate inquiries and discoveries; and embedded assessment should allow teachers to track student learning progression," said Xie.

According to Xie, the Molecular Workbench owes its success to meeting the needs for more effective instructional materials. Teachers cover the science of atoms and molecules and the Molecular Workbench provides a tool to help teach these concepts.

In addition, the growing field of nanotechnology calls for a thorough understanding of atoms and molecules. The Molecular Workbench will help students develop an interest in nanotechnology by introducing these atomic and molecular concepts in secondary school.

In the future Xie and his team plan to develop the Molecular Workbench "into a versatile computational platform that supports a wider scope of science," said Xie. "Decades of computational science research has generated algorithms that can be used to build computational engines for delivering knowledge in their corresponding domains of science."

The team sees their software integrated into digital textbooks and web-based assessment. Ultimately, Xie hopes that this knowledge will be accessible to "every student."

"What is more important in education than passing down to students the greatest power and deepest wisdom brought to us by the most brilliant minds in the history of science and engineering?" said Xie.

"Now that the information technology has empowered us to deliver this through computing, an unprecedented opportunity to revitalize science and engineering education using this enabling technology is right upon us."

The Molecular Workbench is funded by the NSF Advanced Technological Education (ATE) program, part of the Division of Undergraduate Education (DUE).

Investigators
Charles Xie
Marcia Linn
David Wilson
Robert Tinker
Boris Berenfeld
Edwin O'Sullivan
Frieda Reichsman

Related Institutions/Organizations
Concord Consortium

####

For more information, please click here

Contacts:
Ellen Ferrante
National Science Foundation
(703) 292-2204

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Molecular Workbench simulation:

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Chemistry

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project