Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers develop and test new molecule as a delivery vehicle to image and kill brain tumors

Abstract:
A single compound with dual function - the ability to deliver a diagnostic and therapeutic agent - may one day be used to enhance the diagnosis, imaging and treatment of brain tumors, according to findings from Virginia Commonwealth University and Virginia Tech.

Researchers develop and test new molecule as a delivery vehicle to image and kill brain tumors

Richmond, VA | Posted on August 3rd, 2011

Glioblastomas are the most common and aggressive brain tumor in humans, with a high rate of relapse. These tumor cells often extend beyond the well-defined tumor margins making it extremely difficult for clinicians and radiologists to visualize with current imaging techniques. Researchers have been investigating enhanced methods of attacking these cells in order to possibly delay or prevent brain tumor relapse.

In a study published in the August issue of the journal Radiology, the research team led by Panos Fatouros, Ph.D., a former professor and chair of the Division of Radiation Physics and Biology in the VCU School of Medicine who retired in 2010, demonstrated that a nanoparticle containing an MRI diagnostic agent can effectively be imaged within the brain tumor and provide radiation therapy in an animal model.

The nanoparticle filled with gadolinium, a sensitive MRI contrast agent for imaging, and coupled with radioactive lutetium 177 to deliver brachytherapy, is known as a theranostic agent - a single compound capable of delivering simultaneously effective treatment and imaging. The lutetium 177 is attached to the outside of the carbon cage of the nanoparticle.

"We believe the clustering properties of this nanoplatform prolong its retention within the tumor, thereby allowing a higher radiation dose to be delivered locally," said Michael Shultz, Ph.D., a research fellow in Fatouros' lab in the Department of Radiology in the VCU School of Medicine.

"This theranostic agent could potentially provide critical data about tumor response to therapy by means of longitudinal imaging without further contrast administration," said Fatouros.

A nanoparticle called a functionalized metallofullerene (fMF), also known as a "buckyball," served as the basis of this work and was created by study collaborator, Harry Dorn, Ph.D., a chemistry professor at Virginia Tech, and his team. In 1999, Dorn and his colleagues were able to encapsulate rare earth metals in the hollow interior of these nanoparticles that can easily be recognized by MRI techniques.

"Although this is a limited animal study, it shows great promise and hopefully this metallofullerene platform will be extended to humans," said Dorn.

###
Fatouros, who is the corresponding author on the study, Shultz and Dorn collaborated with John D. Wilson, Ph.D., associate professor in the VCU Department of Radiology; Christine E. Fuller, M.D., professor and director of neuropathology and autopsy pathology at VCU; and Jianyuan "Jason" Zhang, a graduate student in chemistry at Virginia Tech from Beijing, China.

The study was funded by grants to Fatouros from the National Institutes of Health's National Cancer Institute, and to Dorn from the National Science Foundation.

EDITOR'S NOTE: A copy of the study is available for reporters by email request from .

####

About Virginia Commonwealth University
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers.

For more information, please click here

Contacts:
Sathya Abraham

804-827-0890

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project