Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Vascular composites enable dynamic structural materials

Image by Piyush Thakre, Alex Jerez, Ryan Durdle and Jeremy Miller, Beckman Institute, U. of I.

A vascularized fiber-reinforced composite material. Illinois researchers developed a class of sacrificial fibers that degrade after composite fabrication, leaving hollow vascular tunnels that can transport liquids or gases through the composite.
Image by Piyush Thakre, Alex Jerez, Ryan Durdle and Jeremy Miller, Beckman Institute, U. of I.

A vascularized fiber-reinforced composite material. Illinois researchers developed a class of sacrificial fibers that degrade after composite fabrication, leaving hollow vascular tunnels that can transport liquids or gases through the composite.

Abstract:
Taking their cue from biological circulatory systems, University of Illinois researchers have developed vascularized structural composites, creating materials that are lightweight and strong with potential for self-healing, self-cooling, metamaterials and more.

Vascular composites enable dynamic structural materials

Champaign, IL | Posted on July 25th, 2011

"We can make a material now that's truly multifunctional by simply circulating fluids that do different things within the same material system," said Scott White, the Willet Professor of aerospace engineering who led the group. "We have a vascularized structural material that can do almost anything."

Composite materials are a combination of two or more materials that harness the properties of both. Composites are valued as structural materials because they can be lightweight and strong. Many composites are fiber-reinforced, made of a network of woven fibers embedded in resin - for example, graphite, fiberglass or Kevlar.

The Illinois team, part of the Autonomous Materials Systems Laboratory in the Beckman Institute for Advanced Science and Technology, developed a method of making fiber-reinforced composites with tiny channels for liquid or gas transport. The channels could wind through the material in one long line or branch out to form a network of capillaries, much like the vascular network in a tree.

"Trees are incredible structural materials, but they're dynamic too," said co-author Jeffrey Moore, the Murchison-Mallory professor of chemistry and a professor of materials science and engineering. "They can pump fluids, transfer mass and energy from the roots to the leaves. This is the first step to making synthetic materials that have that kind of functionality."

The key to the method, published in the journal Advanced Materials, is the use of sacrificial fibers. The team treated commercially available fibers so that they would degrade at high temperatures. The sacrificial fibers are no different from normal fibers during weaving and composite fabrication. But when the temperature is raised further, the treated fibers vaporize - leaving tiny channels in their place - without affecting the structural composite material itself.

"There have been vascular materials fabricated previously, including things that we've done, but this paper demonstrated that you can approach the manufacturing with a concept that is vastly superior in terms of scalability and commercial viability," White said.

In the paper, the researchers demonstrate four classes of application by circulating different fluids through a vascular composite: temperature regulation, chemistry, conductivity and electromagnetism. They regulate temperature by circulating coolant or a hot fluid. To demonstrate a chemical reaction, they injected chemicals into different vascular branches that merged, mixing the chemicals to produce a luminescent reaction. They made the structure electrically active by using conductive liquid, and changed its electromagnetic signature with ferrofluids - a key property for stealth applications.

Next, the researchers hope to develop interconnected networks with membranes between neighboring channels to control transport between channels. Such networks would enable many chemical and energy applications, such as self-healing polymers or fuel cells.

"This is not just another microfluidic device," said co-author Nancy Sottos, the Willett professor of materials science and engineering and a professor of aerospace engineering. "It's not just a widget on a chip. It's a structural material that's capable of many functions that mimic biological systems. That's a big jump."

This work was supported by the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Scott White
217-333-1077

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Three-Dimensional Microvascular Fiber-Reinforced Composites,” is available online.

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Microfluidics/Nanofluidics

Nanoscale assembly line August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Military

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Biomimetic photodetector 'sees' in color: Rice lab uses CMOS-compatible aluminum for on-chip color detection August 25th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE