Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A nanotech solution controlling the path of light can brighten up our lives

Abstract:
We want our electrical devices to have bright screens with low energy needs, so they can be used for a long time before recharge is required. Scientists are increasing the intensity of light by making nanometer scale patterns on surfaces. The nanoimprinting method will change devices‚ optical properties, without making them demand more energy. Except for brighter mobile phone and computer screens, we may soon have the possibility to benefit from this nanotech solution while driving.

A nanotech solution controlling the path of light can brighten up our lives

Italy | Posted on July 18th, 2011

Researchers have modified surface structures by making nanometer scale patterns, with the help from a technology called nanoimprinting. Nanoimprinting is a high through-put and low cost method that produces these patterns through the use of a stamp. In the European Commission-funded project NaPANIL (Nanopatterning, Production and Applications based on Nanoimprinting Lithography) 18 partners are working on 3D nano-manufacturing based on NIL (nanoimprinting lithography), materials, stamps, tools and software required for new applications, and industrial suitable modeling and metrology tools.

Nanoimprinting has made it possible for the NaPANIL researchers to significantly increase emitted light‚s intensity by controlling the light path through glass or diffusing a single ray into homogenous illumination. The results from their research have several application areas. The industrial partners are focusing on making mobile phone displays that are brighter than displays on the market, but use less energy, and head-up displays (HUDs) for vehicles‚ windscreens that are easy to read in all light conditions. Car manufacturers are developing different head-up displays to make it easier for drivers to concentrate on the road, while at the same time clearly see and process all the information they can be flooded with from different systems. For example, General Motors in collaboration with researchers at several universities is testing a system with infrared cameras that can identify the road‚s edge, when it is almost invisible in fog, and make it visible with the help of laser which highlights it onto the windscreen. However, the system will not be introduced to the market in the near future. The NaPANIL project‚s Emissive Head-Up Display (eHUD) from Fiat may be closer and has a integrated light emitting layer that is offering this feature of easy-reading all day, compared to conventional HUDs which project images.

The project partners also hope to introduce eco-friendly windows that can reduce the need for artificial lights during the day, by redirecting sunlight to parts of our buildings unreachable with regular windows. The process of structuring surfaces through nanoimprinting is an innovative approach that has the potential to brighten up our lives in several ways, in our homes, while travelling and at work.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Manipulating light inside opaque layers April 24th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

What screens are made of: New twists (and bends) in LCD research: X-ray research at Berkeley Lab details exotic structure formed by liquid crystals April 19th, 2016

Discoveries

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Announcements

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Photonics/Optics/Lasers

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Printing/Lithography/Inkjet/Inks

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

Researchers use 3-D printing to create structure with active chemistry April 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic