Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A nanotech solution controlling the path of light can brighten up our lives

Abstract:
We want our electrical devices to have bright screens with low energy needs, so they can be used for a long time before recharge is required. Scientists are increasing the intensity of light by making nanometer scale patterns on surfaces. The nanoimprinting method will change devices‚ optical properties, without making them demand more energy. Except for brighter mobile phone and computer screens, we may soon have the possibility to benefit from this nanotech solution while driving.

A nanotech solution controlling the path of light can brighten up our lives

Italy | Posted on July 18th, 2011

Researchers have modified surface structures by making nanometer scale patterns, with the help from a technology called nanoimprinting. Nanoimprinting is a high through-put and low cost method that produces these patterns through the use of a stamp. In the European Commission-funded project NaPANIL (Nanopatterning, Production and Applications based on Nanoimprinting Lithography) 18 partners are working on 3D nano-manufacturing based on NIL (nanoimprinting lithography), materials, stamps, tools and software required for new applications, and industrial suitable modeling and metrology tools.

Nanoimprinting has made it possible for the NaPANIL researchers to significantly increase emitted light‚s intensity by controlling the light path through glass or diffusing a single ray into homogenous illumination. The results from their research have several application areas. The industrial partners are focusing on making mobile phone displays that are brighter than displays on the market, but use less energy, and head-up displays (HUDs) for vehicles‚ windscreens that are easy to read in all light conditions. Car manufacturers are developing different head-up displays to make it easier for drivers to concentrate on the road, while at the same time clearly see and process all the information they can be flooded with from different systems. For example, General Motors in collaboration with researchers at several universities is testing a system with infrared cameras that can identify the road‚s edge, when it is almost invisible in fog, and make it visible with the help of laser which highlights it onto the windscreen. However, the system will not be introduced to the market in the near future. The NaPANIL project‚s Emissive Head-Up Display (eHUD) from Fiat may be closer and has a integrated light emitting layer that is offering this feature of easy-reading all day, compared to conventional HUDs which project images.

The project partners also hope to introduce eco-friendly windows that can reduce the need for artificial lights during the day, by redirecting sunlight to parts of our buildings unreachable with regular windows. The process of structuring surfaces through nanoimprinting is an innovative approach that has the potential to brighten up our lives in several ways, in our homes, while travelling and at work.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic