Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A nanotech solution controlling the path of light can brighten up our lives

Abstract:
We want our electrical devices to have bright screens with low energy needs, so they can be used for a long time before recharge is required. Scientists are increasing the intensity of light by making nanometer scale patterns on surfaces. The nanoimprinting method will change devices‚ optical properties, without making them demand more energy. Except for brighter mobile phone and computer screens, we may soon have the possibility to benefit from this nanotech solution while driving.

A nanotech solution controlling the path of light can brighten up our lives

Italy | Posted on July 18th, 2011

Researchers have modified surface structures by making nanometer scale patterns, with the help from a technology called nanoimprinting. Nanoimprinting is a high through-put and low cost method that produces these patterns through the use of a stamp. In the European Commission-funded project NaPANIL (Nanopatterning, Production and Applications based on Nanoimprinting Lithography) 18 partners are working on 3D nano-manufacturing based on NIL (nanoimprinting lithography), materials, stamps, tools and software required for new applications, and industrial suitable modeling and metrology tools.

Nanoimprinting has made it possible for the NaPANIL researchers to significantly increase emitted light‚s intensity by controlling the light path through glass or diffusing a single ray into homogenous illumination. The results from their research have several application areas. The industrial partners are focusing on making mobile phone displays that are brighter than displays on the market, but use less energy, and head-up displays (HUDs) for vehicles‚ windscreens that are easy to read in all light conditions. Car manufacturers are developing different head-up displays to make it easier for drivers to concentrate on the road, while at the same time clearly see and process all the information they can be flooded with from different systems. For example, General Motors in collaboration with researchers at several universities is testing a system with infrared cameras that can identify the road‚s edge, when it is almost invisible in fog, and make it visible with the help of laser which highlights it onto the windscreen. However, the system will not be introduced to the market in the near future. The NaPANIL project‚s Emissive Head-Up Display (eHUD) from Fiat may be closer and has a integrated light emitting layer that is offering this feature of easy-reading all day, compared to conventional HUDs which project images.

The project partners also hope to introduce eco-friendly windows that can reduce the need for artificial lights during the day, by redirecting sunlight to parts of our buildings unreachable with regular windows. The process of structuring surfaces through nanoimprinting is an innovative approach that has the potential to brighten up our lives in several ways, in our homes, while travelling and at work.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Graphene-based transparent electrodes for highly efficient flexible OLEDS: A Korean research team developed an ideal electrode structure composed of graphene and layers of titanium dioxide and conducting polymers, resulting in highly flexible and efficient OLEDs June 5th, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic