Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphite + water = the future of energy storage

Graphene sheets. Credit: Gengping Jiang
Graphene sheets. Credit: Gengping Jiang

Abstract:
A combination of two ordinary materials - graphite and water - could produce energy storage systems that perform on par with lithium ion batteries, but recharge in a matter of seconds and have an almost indefinite lifespan.

Graphite + water = the future of energy storage

Melbourne, Australia | Posted on July 15th, 2011

Dr Dan Li, of the Monash University Department of Materials Engineering, and his research team have been working with a material called graphene, which could form the basis of the next generation of ultrafast energy storage systems.

"Once we can properly manipulate this material, your iPhone, for example, could charge in a few seconds, or possibly faster." said Dr Li.

Graphene is the result of breaking down graphite, a cheap, readily available material commonly used in pencils, into layers one atom thick. In this form, it has remarkable properties.

Graphene is strong, chemically stable, an excellent conductor of electricity and, importantly, has an extremely high surface area.

Dr Li said these qualities make graphene highly suitable for energy storage applications.

"The reason graphene isn't being used everywhere is that these very thin sheets, when stacked into a usable macrostructure, immediately bond together, reforming graphite. When graphene restacks, most of the surface area is lost and it doesn't behave like graphene anymore."

Now, Dr Li and his team have discovered the key to maintaining the remarkable properties of separate graphene sheets: water. Keeping graphene moist - in gel form - provides repulsive forces between the sheets and prevents re-stacking, making it ready for real-world application.

"The technique is very simple and can easily be scaled up. When we discovered it, we thought it was unbelievable. We're taking two basic, inexpensive materials - water and graphite - and making this new nanomaterial with amazing properties," said Dr Li.

When used in energy devices, graphene gel significantly outperforms current carbon-based technology, both in terms of the amount of charge stored and how fast the charges can be delivered.

Dr Li said the benefits of developing this new nanotechnology extend beyond consumer electronics.

"High-speed, reliable and cost-effective energy storage systems are critical for the future viability of electricity from renewable resources. These systems are also the key to large-scale adoption of electrical vehicles.

"Graphene gel is also showing promise for use in water purification membranes, biomedical devices and sensors."

Dr Li has been working with graphene since 2006 and his team's research findings have recently been published in a number of prestigious journals including Advanced Materials, Angewandte Chemie and Chemical Communications.

####

For more information, please click here

Contacts:
Telephone +61 3 9903 4840
Email:

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Graphene/ Graphite

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Energy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Water

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

A New Approach To Building Efficient Thermoelectric Nanomaterials June 17th, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic