Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breaking Kasha’s Rule: Berkeley Lab Scientists Find Unique Luminescence in Tetrapod Nanocrystals

Berkeley Lab researchers have developed unqiue semiconductor tetrapods that under illumination break Kasha’s rule for photoluminescence by emitting two colors of light.
Berkeley Lab researchers have developed unqiue semiconductor tetrapods that under illumination break Kasha’s rule for photoluminescence by emitting two colors of light.

Abstract:
Observation of a scientific rule being broken can sometimes lead to new knowledge and important applications. Such would seem to be the case when scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) created artificial molecules of semiconductor nanocrystals and watched them break a fundamental principle of photoluminescence known as "Kasha's rule."

Breaking Kasha’s Rule: Berkeley Lab Scientists Find Unique Luminescence in Tetrapod Nanocrystals

Berkeley, CA | Posted on July 2nd, 2011

Named for chemist Michael Kasha, who proposed it in 1950, Kasha's rule holds that when light is shined on a molecule, the molecule will only emit light (fluorescence or phosphorescence) from its lowest energy excited state. This is why photoluminescent molecules emit light at a lower energy than the excitation light. While there have been examples of organic molecules, such as azulene, that break Kasha's rule, these examples are rare. Highly luminescent molecular systems crafted from quantum dots that break Kasha's rule have not been reported - until now.

"We have demonstrated a semiconductor nanocrystal molecule, in the form of a tetrapod consisting of a cadmium-selenide quantum dot core and four cadmium sulfide arms, that breaks Kasha's rule by emitting light from multiple excited states," says Paul Alivisatos, director of Berkeley Lab and the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley. "Because this nanocrystal system has much higher quantum yield and is relatively more photostable than organic molecules, it holds promising potential for optical sensing and light emission-based applications, such as LEDs and imaging labels."

Alivisatos, an internationally recognized authority on nanochemistry, is one of two corresponding authors, along with Sanjeevi Sivasankar of DOE's Ames Laboratory and Iowa State University, on a paper describing this work in the journal Nano Letters. The paper is titled "Spatially Indirect Emission in a Luminescent Nanocrystal Molecule." Co-authoring the paper were Charina Choi, Prashant Jain and Andrew Olson, all members of Alivisatos' research group, plus Hui Li, a member of Sivasankar's research group.

Semiconductor tetrapods make exceptionally good subjects for the study of electronically coupled nanocrystals as Charina Choi, lead author of the Nano Letters paper, explains.

"For the study of nanocrystal molecules, it is important to be able to grow complex nanocrystals in which simple nanocrystal building blocks are connected together in well-defined ways," Choi says. "Although there are many versions of electronically coupled nanocrystal molecules, semiconductor tetrapods feature a beautiful symmetry that is analogous to the methane molecule, one of the fundamental units of organic chemistry."

In this study, Choi, Alivisatos and their co-authors designed a cadmium-selenide (CdSe)and cadmium-sulfide (CdS) core/shell tetrapod whose quasi-type-I band alignment results in high luminescence quantum yields of 30- to 60-percent. The highest occupied molecular orbital (HOMO) of this tetrapod involves an electron "hole" within the cadmium-sulfide core, while the lowest unoccupied molecular orbital (LUMO) is centered within the core but is also likely to be present in the four arms as well. The next lowest unoccupied molecular orbital (LUMO+1) is located primarily within the four CdS arms.

Through single particle photoluminescence spectroscopy carried out at Ames, it was determined that when a CdSe/CdS core/shell tetrapod is excited, not only is a photon emitted at the HOMO-LUMO energy gap as expected, but there is also a second photon emitted at a higher energy that corresponds to a transition to the HOMO from the LUMO+1.

"The discovery that these CdSe/CdS core/shell tetrapods emit two colors was a surprise," Choi says. "If we can learn to control the frequency and intensity of the emitted colors then these tetrapods may be useful for multi-color emission technologies."

For example, says co-author Prashant Jain, "In the field of optical sensing with light emitters, it is impractical to rely simply on changes in emission intensity as emission intensity can fluctuate significantly due to background signal. However, if a molecule emits light from multiple excited states, then one can design a ratiometric sensor, which would provide more accurate readouts than intensity magnitude, and would be more robust against fluctuations and background signals."

Another promising possibility for CdSe/CdS core/shell tetrapods is their potential application as nanoscale sensors for measuring forces. Previous work by Alivisatos and Choi showed that the emission wavelengths of these tetrapods will shift in response to local stress on their four arms.

"When a stress bends the arms of a tetrapod it perturbs the electronic coupling within the tetrapod's heterostructure, which in turn changes the color of the emitted light, and also likely alters the ratio of emission intensity from the two excited states," Choi says. "We are currently trying to use this dependence to measure biological forces, for example, the stresses exerted by a beating heart cell."

By adjusting the length of a CdSe/CdS core/shell tetrapod's arms, it is possible to tune band alignment and electronic coupling within the heterostructure. The result would be tunable emissions from multiple excited states, an important advantage for nano-optic applications.

"We've demonstrated that the oscillator strength of LUMO+1 to HOMO light emissions can be tuned by changing the arm length of the tetrapod," Choi says. "We predict that the lifetime and energy of the emissions can also be controlled through appropriate structural modifications, including arm thickness, number of arms, chemical composition and particle strain."

This research was primarily supported by DOE's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Imaging

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Silver nanoparticles take spectroscopy to new dimension: A new way of organizing nanostructures has boosted Raman signals by a hundred thousand times to better identify and characterize different molecules January 2nd, 2018

Laboratories

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Sensors

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project