Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Breaking Kasha’s Rule: Berkeley Lab Scientists Find Unique Luminescence in Tetrapod Nanocrystals

Berkeley Lab researchers have developed unqiue semiconductor tetrapods that under illumination break Kasha’s rule for photoluminescence by emitting two colors of light.
Berkeley Lab researchers have developed unqiue semiconductor tetrapods that under illumination break Kasha’s rule for photoluminescence by emitting two colors of light.

Abstract:
Observation of a scientific rule being broken can sometimes lead to new knowledge and important applications. Such would seem to be the case when scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) created artificial molecules of semiconductor nanocrystals and watched them break a fundamental principle of photoluminescence known as "Kasha's rule."

Breaking Kasha’s Rule: Berkeley Lab Scientists Find Unique Luminescence in Tetrapod Nanocrystals

Berkeley, CA | Posted on July 2nd, 2011

Named for chemist Michael Kasha, who proposed it in 1950, Kasha's rule holds that when light is shined on a molecule, the molecule will only emit light (fluorescence or phosphorescence) from its lowest energy excited state. This is why photoluminescent molecules emit light at a lower energy than the excitation light. While there have been examples of organic molecules, such as azulene, that break Kasha's rule, these examples are rare. Highly luminescent molecular systems crafted from quantum dots that break Kasha's rule have not been reported - until now.

"We have demonstrated a semiconductor nanocrystal molecule, in the form of a tetrapod consisting of a cadmium-selenide quantum dot core and four cadmium sulfide arms, that breaks Kasha's rule by emitting light from multiple excited states," says Paul Alivisatos, director of Berkeley Lab and the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley. "Because this nanocrystal system has much higher quantum yield and is relatively more photostable than organic molecules, it holds promising potential for optical sensing and light emission-based applications, such as LEDs and imaging labels."

Alivisatos, an internationally recognized authority on nanochemistry, is one of two corresponding authors, along with Sanjeevi Sivasankar of DOE's Ames Laboratory and Iowa State University, on a paper describing this work in the journal Nano Letters. The paper is titled "Spatially Indirect Emission in a Luminescent Nanocrystal Molecule." Co-authoring the paper were Charina Choi, Prashant Jain and Andrew Olson, all members of Alivisatos' research group, plus Hui Li, a member of Sivasankar's research group.

Semiconductor tetrapods make exceptionally good subjects for the study of electronically coupled nanocrystals as Charina Choi, lead author of the Nano Letters paper, explains.

"For the study of nanocrystal molecules, it is important to be able to grow complex nanocrystals in which simple nanocrystal building blocks are connected together in well-defined ways," Choi says. "Although there are many versions of electronically coupled nanocrystal molecules, semiconductor tetrapods feature a beautiful symmetry that is analogous to the methane molecule, one of the fundamental units of organic chemistry."

In this study, Choi, Alivisatos and their co-authors designed a cadmium-selenide (CdSe)and cadmium-sulfide (CdS) core/shell tetrapod whose quasi-type-I band alignment results in high luminescence quantum yields of 30- to 60-percent. The highest occupied molecular orbital (HOMO) of this tetrapod involves an electron "hole" within the cadmium-sulfide core, while the lowest unoccupied molecular orbital (LUMO) is centered within the core but is also likely to be present in the four arms as well. The next lowest unoccupied molecular orbital (LUMO+1) is located primarily within the four CdS arms.

Through single particle photoluminescence spectroscopy carried out at Ames, it was determined that when a CdSe/CdS core/shell tetrapod is excited, not only is a photon emitted at the HOMO-LUMO energy gap as expected, but there is also a second photon emitted at a higher energy that corresponds to a transition to the HOMO from the LUMO+1.

"The discovery that these CdSe/CdS core/shell tetrapods emit two colors was a surprise," Choi says. "If we can learn to control the frequency and intensity of the emitted colors then these tetrapods may be useful for multi-color emission technologies."

For example, says co-author Prashant Jain, "In the field of optical sensing with light emitters, it is impractical to rely simply on changes in emission intensity as emission intensity can fluctuate significantly due to background signal. However, if a molecule emits light from multiple excited states, then one can design a ratiometric sensor, which would provide more accurate readouts than intensity magnitude, and would be more robust against fluctuations and background signals."

Another promising possibility for CdSe/CdS core/shell tetrapods is their potential application as nanoscale sensors for measuring forces. Previous work by Alivisatos and Choi showed that the emission wavelengths of these tetrapods will shift in response to local stress on their four arms.

"When a stress bends the arms of a tetrapod it perturbs the electronic coupling within the tetrapod's heterostructure, which in turn changes the color of the emitted light, and also likely alters the ratio of emission intensity from the two excited states," Choi says. "We are currently trying to use this dependence to measure biological forces, for example, the stresses exerted by a beating heart cell."

By adjusting the length of a CdSe/CdS core/shell tetrapod's arms, it is possible to tune band alignment and electronic coupling within the heterostructure. The result would be tunable emissions from multiple excited states, an important advantage for nano-optic applications.

"We've demonstrated that the oscillator strength of LUMO+1 to HOMO light emissions can be tuned by changing the arm length of the tetrapod," Choi says. "We predict that the lifetime and energy of the emissions can also be controlled through appropriate structural modifications, including arm thickness, number of arms, chemical composition and particle strain."

This research was primarily supported by DOE's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

News and information

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Imaging

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Sensors

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Discoveries

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE