Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Printable nanotech solar cells developed: Australian researchers have invented nanotech solar cells that are thin, flexible and use one hundredth the materials of conventional solar cells

Abstract:
Printable, flexible solar cells that could dramatically decrease the cost of renewable energy have been developed by University of Melbourne PhD student Brandon MacDonald in collaboration with his colleagues from University of Melbourne's Bio21 Institute and the CSIRO's Future Manufacturing Flagship.

Printable nanotech solar cells developed: Australian researchers have invented nanotech solar cells that are thin, flexible and use one hundredth the materials of conventional solar cells

Melbourne, Australia | Posted on July 1st, 2011

Their patented technology is based on inks containing tiny, semiconducting nanocrystals, which can be printed directly onto a variety of surfaces.

By choosing the right combination of ink and surface it is possible to make efficient solar cells using very little material or energy. The solar cells can be used much like current solar panels to provide power to things like lighting on bus shelters.

"The problem with traditional solar cells," Brandon says, "is that making them requires many complex and energy intensive steps."

"Using nanocrystal inks, they can be manufactured in a continuous manner, which increases production rate and should make the cells much cheaper to produce."

Nanocrystals, also known as quantum dots, are semiconducting particles with a diameter of a few millionths of a millimetre. Because of their extremely small size they can remain suspended in a solution.

This solution can then be deposited onto a variety of materials, including flexible plastics or metal foils. It is then dried to form a thin film. Brandon and his colleagues discovered that by depositing multiple layers of nanocrystals they can fill in any defects formed during the drying process.

The result is a densely packed, uniform film, ideal for lightweight solar cells.

The nanocrystals consist of a semiconducting material called cadmium telluride, which is a very strong absorber of light. This means that the resulting cells can be made very thin.

"The total amount of material used in these cells is about 1 per cent of what you would use for a typical silicon solar cell. Even compared to other types of cadmium telluride cells ours are much thinner, using approximately one-tenth as much material," Brandon says.

The technology is not limited to solar cells. It can also be used to make printable versions of other electronic devices, such as light emitting diodes, lasers or transistors.

For his work Brandon has received the 2010/11 DuPont Young Innovator's Award and has had his work published in the journal Nano Letters.

####

About University of Melbourne
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, teaching and engagement.

Melbourne's teaching excellence has been rewarded two years in a row by grants from the Commonwealth Government's Learning and Teaching Performance Fund for Australian universities that demonstrate excellence in undergraduate teaching and learning.

Melbourne was also one of only three Australian universities to win ten citations-the maximum number of awards possible-under the Carrick Citations for Outstanding Contributions to Student Learning. The citations recognise commitment by university staff who have shown outstanding leadership and innovation in teaching, and dedication and enthusiasm for student learning.

For more information, please click here

Contacts:
Charlotte Crawford
University of Melbourne Media Unit
0419 789 432

Copyright © University of Melbourne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project