Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Printable nanotech solar cells developed: Australian researchers have invented nanotech solar cells that are thin, flexible and use one hundredth the materials of conventional solar cells

Abstract:
Printable, flexible solar cells that could dramatically decrease the cost of renewable energy have been developed by University of Melbourne PhD student Brandon MacDonald in collaboration with his colleagues from University of Melbourne's Bio21 Institute and the CSIRO's Future Manufacturing Flagship.

Printable nanotech solar cells developed: Australian researchers have invented nanotech solar cells that are thin, flexible and use one hundredth the materials of conventional solar cells

Melbourne, Australia | Posted on July 1st, 2011

Their patented technology is based on inks containing tiny, semiconducting nanocrystals, which can be printed directly onto a variety of surfaces.

By choosing the right combination of ink and surface it is possible to make efficient solar cells using very little material or energy. The solar cells can be used much like current solar panels to provide power to things like lighting on bus shelters.

"The problem with traditional solar cells," Brandon says, "is that making them requires many complex and energy intensive steps."

"Using nanocrystal inks, they can be manufactured in a continuous manner, which increases production rate and should make the cells much cheaper to produce."

Nanocrystals, also known as quantum dots, are semiconducting particles with a diameter of a few millionths of a millimetre. Because of their extremely small size they can remain suspended in a solution.

This solution can then be deposited onto a variety of materials, including flexible plastics or metal foils. It is then dried to form a thin film. Brandon and his colleagues discovered that by depositing multiple layers of nanocrystals they can fill in any defects formed during the drying process.

The result is a densely packed, uniform film, ideal for lightweight solar cells.

The nanocrystals consist of a semiconducting material called cadmium telluride, which is a very strong absorber of light. This means that the resulting cells can be made very thin.

"The total amount of material used in these cells is about 1 per cent of what you would use for a typical silicon solar cell. Even compared to other types of cadmium telluride cells ours are much thinner, using approximately one-tenth as much material," Brandon says.

The technology is not limited to solar cells. It can also be used to make printable versions of other electronic devices, such as light emitting diodes, lasers or transistors.

For his work Brandon has received the 2010/11 DuPont Young Innovator's Award and has had his work published in the journal Nano Letters.

####

About University of Melbourne
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, teaching and engagement.

Melbourne's teaching excellence has been rewarded two years in a row by grants from the Commonwealth Government's Learning and Teaching Performance Fund for Australian universities that demonstrate excellence in undergraduate teaching and learning.

Melbourne was also one of only three Australian universities to win ten citations-the maximum number of awards possible-under the Carrick Citations for Outstanding Contributions to Student Learning. The citations recognise commitment by university staff who have shown outstanding leadership and innovation in teaching, and dedication and enthusiasm for student learning.

For more information, please click here

Contacts:
Charlotte Crawford
University of Melbourne Media Unit
0419 789 432

Copyright © University of Melbourne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Printing/Lithography/Inkjet/Inks

Teijin to Participate in Nano Tech 2016 January 21st, 2016

New bimetallic alloy nanoparticles for printed electronic circuits: Production of oxidation-resistant copper alloy nanoparticles by electrical explosion of wire for printed electronics January 5th, 2016

Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Screen Printable Functionalised Graphene Ink November 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic