Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > At Small Scales, Tug-of-War Between Electrons Can Lead to Magnetism Under Surprising Circumstances

Theoretical physicist Igor Zutic and colleagues hope to create a quantum dot that is magnetic.
Theoretical physicist Igor Zutic and colleagues hope to create a quantum dot that is magnetic.

Abstract:
At the smallest scales, magnetism may not work quite the way scientists expected, according to a recent paper in Physical Review Letters by Rafal Oszwaldowski and Igor Zutic of the University at Buffalo and Andre Petukhov of the South Dakota School of Mines and Technology.

At Small Scales, Tug-of-War Between Electrons Can Lead to Magnetism Under Surprising Circumstances

Buffalo, NY | Posted on June 29th, 2011

The three physicists have proposed that it would be possible to create a quantum dot -- a kind of nanoparticle -- that is magnetic under surprising circumstances.

Magnetism is determined by a property all electrons possess: spin. Individual spins are akin to tiny bar magnets, which have north and south poles. Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons have the same spin.

Mobile electrons can act as "magnetic messengers," using their own spin to align the spins of nearby atoms. If two mobile electrons with opposite spins are in an area, conventional wisdom says that their influences should cancel out, leaving a material without magnetic properties.

But the UB-South Dakota team has proposed that at very small scales, magnetism may be more nuanced than that. It is possible, the physicists say, to observe a peculiar form of magnetism in quantum dots whose mobile electrons have opposing spins.

In their Physical Review Letters article, the researchers describe a theoretical scenario involving a quantum dot that contains two free-floating, mobile electrons with opposite spins, along with manganese atoms fixed at precise locations within the quantum dot.

The quantum dot's mobile electrons act as "magnetic messengers," using their own spins to align the spins of nearby manganese atoms.

Under these circumstances, conventional thinking would predict a stalemate: Each mobile electron exerts an equal influence over spins of manganese atoms, so neither is able to "win."

Through complex calculations, however, Oszwaldowski, Zutic and Petukhov show that the quantum dot's two mobile electrons will actually influence the manganese spins differently.

That's because while one mobile electron prefers to stay in the middle of the quantum dot, the other prefers to locate further toward the edges. As a result, manganese atoms in different parts of the quantum dot receive different messages about which way to align their spins.

In the "tug-of-war" that ensues, the mobile electron that interacts more intensely with the manganese atoms "wins," aligning more spins and causing the quantum dot, as a whole, to be magnetic. (For a visual representation of this tug-of-war, see Figure 1.)

This prediction, if proven, could "completely alter the basic notions that we have about magnetic interactions," Zutic says.

"When you have two mobile electrons with opposite spins, the assumption is that there is a nice balance of up and down spins, and therefore, there is no magnetic message, or nothing that could be sent to align nearby manganese spins," he says. "But what we are saying is that it is actually a tug of war. The building blocks of magnetism are still mysterious and hold many surprises."

Scientists including UB Professor Athos Petrou, UB College of Arts and Sciences Dean Bruce McCombe and UB Vice President for Research Alexander Cartwright have demonstrated experimentally that in a quantum dot with just one mobile electron, the mobile electron will act as a magnetic messenger, robustly aligning the spins of adjacent manganese atoms.

Now, Petrou and his collaborators are interested in taking their research a step further and testing the tug-of-war prediction for two-electron quantum dots, Zutic says.

Zutic adds that learning more about magnetism is important as society continues to find novel uses for magnets, which could advance technologies including lasers, medical imaging devices and, importantly, computers.

He explains the promise of magnet- or spin-based computing technology -- called "spintronics" -- by contrasting it with conventional electronics. Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

Studying how magnetism works on a small scale is particularly important, Zutic says, because "we would like to pack more information into less space."

And, of course, unraveling the mysteries of magnetism is satisfying for other, simpler reasons.

"Magnets have been fascinating people for thousands of years," Zutic says. "Some of this fascination was not always related to how you can make a better compass or a better computer hard drive. It was just peculiar that you have materials that attract one another, and you wanted to know why."

Zutic's research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Discoveries

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Announcements

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Military

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

Quantum Dots/Rods

'Quantum dot' technology may help light the future August 19th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic