Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > CNST Researchers Demonstrate Electo-Optic Modulation of Single Photons from a Quantum Dot

Abstract:
In a recent article in Applied Physics Letters,* CNST researchers demonstrated how commercially available electro-optic modulators can be used to tailor the single photon output of quantum dots (QDs) for use in broadband quantum memories and other systems. Nanoscale light-emitters such as semiconductor QDs are leading candidates for the stable generation of single photons "on demand" for use in communications, information processing, and metrology. To create such photons, a train of laser pulses can be used to optically excite a single, epitaxially-grown semiconductor QD, which then emits a train of single photon pulses.

CNST Researchers Demonstrate Electo-Optic Modulation of Single Photons from a Quantum Dot

Gaithersburg, MD | Posted on June 29th, 2011

However, the temporal profile of these single photon pulses, described as a photon wave packet, is typically not ideal for use in quantum information processing. Using commercial, high-performance telecommunications electro-optic modulators, the researchers were able to temporally manipulate these wave packets to produce a variety of shapes, including optimally-shaped Gaussian pulses. Compared to previous work, this approach reduced the modulation timescale more than two orders of magnitude, reaching the sub-nanosecond regime needed for semiconductor QDs. Finally, the researchers proposed that such electro-optic modulation may be a method for improving the quality of single photons from existing QD sources. Because of decoherence, single photons generated by a QD are not identical, and instead have different wave packets. Electro-optic modulation could be a flexible and spectrally broadband way to select for the decoherence-free portion of the QD emission, and thereby improve the photon indistinguishability needed for quantum information processing applications.

*Subnanosecond electro-optic modulation of triggered single photons from a quantum dot, M. T. Rakher and K. Srinivasan, Applied Physics Letters 98, 211103 (2011).

####

For more information, please click here

Contacts:
Kartik Srinivasan
301-975-5938

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Quantum Dots/Rods

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE