Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-Sensitive Graphene Device For Spintronics

Abstract:
A European team of researchers has developed a graphene-based device capable of detecting tiny magnetic fields with a record sensitivity down to the stray field of few magnetic molecules. The researchers have used graphene as a kind spider's web to chemically trap the molecules and detect their magnetization at the same time. This breakthrough in spintronics opens the ways to applications for ultra-high density storage memories and for molecular sensors.

Ultra-Sensitive Graphene Device For Spintronics

Italy | Posted on June 28th, 2011

The study is published this month in the journal Nano Letters. The work has been performed by scientists from the S3 Center of Istituto Nanoscienze-Cnr, the Insitut Néel - CNRS, and the Karlsruhe Institute of Technology.

Magnetic molecules, nano-magnets only few billionth of meter small, are considered very promising for spintronics (electronics exploiting also the spin of the electron), since they can store a bit of information in a very small volume. In order to develop a new generation of magnetic memories it is crucial to be able to "read" tiny units that will soon reach the molecular size.

The new ultra-sensitive device realized enables the magnetic reading at the molecular scale. "It is the first time that such tiny objects are detected", says Andrea Candini, researcher at the Istituto Nanoscienze-Cnr, "just to make clear, the previous record of sensitivity has been beaten by a factor of 100".

To realize the device, the team deposited magnetic molecules on a sheet of graphene, the one atom-thick layer of Carbon famous for its amazing properties. Graphene works as a sort of spider's web able to chemically trap the molecules, to capture their magnetic flux and generate a corresponding electrical signal. This result is the outcome of a 3-year long research.. "Firstly, we synthesized molecules suitable to graft the graphene honeycomb lattice, then we tailored the graphene sheet realizing a device of about 10 nanometers in size; finally, we performed electrical measurements at very low temperatures, in order to limit the noise ".

According to the team of researchers, this result "shows that it is possible to use graphene coupled to magnetic molecules to store information, as.the new device works similarly to the spin valve present in a reading head of today's hard disks, but it is much smaller" says Andrea Candini, "We also foresee applications to detect bio-molecules marked with a single magnetic molecule, such as ultra-sensitive sensors to be integrated in a lab-on-a-chip. " Both of these objectives are in line with the goals of large-scale initiatives such as the Flagship Pilot Actions recently launched by the European Commission on related themes.

Full bibliographic information

Graphene Spintronic Devices with Molecular Nanomagnets
Andrea Candini, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer, and Marco Affronte
DOI: 10.1021/nl2006142 http://pubs.acs.org/doi/abs/10.1021/nl2006142

####

About CNR-Consiglio Nazionale delle Ricerche
S3 is a national research center devoted to nanoscience based on a multidisciplinary approach and close interaction between experimental and theoretical activities. It is part of the Istituto Nanoscienze of the Italian Research Council (Cnr). S3 research aims at investigating and designing matter and functions at the nanoscale, as well as understanding and controlling their impact on the properties of macroscopic systems. S3 is located within the scientific campus of the University of Modena and Reggio Emilia and is based on a very close collaboration with several Departments of the University. S3 is a lively and international environment, that attracts excellent young researchers and students, and offers to them facilities designed to meet the laboratory and research needs.

For more information, please click here

Contacts:
Marco Ferrazzoli
00390649933383
mobile 0039 347 0778836

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project