Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra-Sensitive Graphene Device For Spintronics

Abstract:
A European team of researchers has developed a graphene-based device capable of detecting tiny magnetic fields with a record sensitivity down to the stray field of few magnetic molecules. The researchers have used graphene as a kind spider's web to chemically trap the molecules and detect their magnetization at the same time. This breakthrough in spintronics opens the ways to applications for ultra-high density storage memories and for molecular sensors.

Ultra-Sensitive Graphene Device For Spintronics

Italy | Posted on June 28th, 2011

The study is published this month in the journal Nano Letters. The work has been performed by scientists from the S3 Center of Istituto Nanoscienze-Cnr, the Insitut Néel - CNRS, and the Karlsruhe Institute of Technology.

Magnetic molecules, nano-magnets only few billionth of meter small, are considered very promising for spintronics (electronics exploiting also the spin of the electron), since they can store a bit of information in a very small volume. In order to develop a new generation of magnetic memories it is crucial to be able to "read" tiny units that will soon reach the molecular size.

The new ultra-sensitive device realized enables the magnetic reading at the molecular scale. "It is the first time that such tiny objects are detected", says Andrea Candini, researcher at the Istituto Nanoscienze-Cnr, "just to make clear, the previous record of sensitivity has been beaten by a factor of 100".

To realize the device, the team deposited magnetic molecules on a sheet of graphene, the one atom-thick layer of Carbon famous for its amazing properties. Graphene works as a sort of spider's web able to chemically trap the molecules, to capture their magnetic flux and generate a corresponding electrical signal. This result is the outcome of a 3-year long research.. "Firstly, we synthesized molecules suitable to graft the graphene honeycomb lattice, then we tailored the graphene sheet realizing a device of about 10 nanometers in size; finally, we performed electrical measurements at very low temperatures, in order to limit the noise ".

According to the team of researchers, this result "shows that it is possible to use graphene coupled to magnetic molecules to store information, as.the new device works similarly to the spin valve present in a reading head of today's hard disks, but it is much smaller" says Andrea Candini, "We also foresee applications to detect bio-molecules marked with a single magnetic molecule, such as ultra-sensitive sensors to be integrated in a lab-on-a-chip. " Both of these objectives are in line with the goals of large-scale initiatives such as the Flagship Pilot Actions recently launched by the European Commission on related themes.

Full bibliographic information

Graphene Spintronic Devices with Molecular Nanomagnets
Andrea Candini, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer, and Marco Affronte
DOI: 10.1021/nl2006142 http://pubs.acs.org/doi/abs/10.1021/nl2006142

####

About CNR-Consiglio Nazionale delle Ricerche
S3 is a national research center devoted to nanoscience based on a multidisciplinary approach and close interaction between experimental and theoretical activities. It is part of the Istituto Nanoscienze of the Italian Research Council (Cnr). S3 research aims at investigating and designing matter and functions at the nanoscale, as well as understanding and controlling their impact on the properties of macroscopic systems. S3 is located within the scientific campus of the University of Modena and Reggio Emilia and is based on a very close collaboration with several Departments of the University. S3 is a lively and international environment, that attracts excellent young researchers and students, and offers to them facilities designed to meet the laboratory and research needs.

For more information, please click here

Contacts:
Marco Ferrazzoli
00390649933383
mobile 0039 347 0778836

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Graphene/ Graphite

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Memory Technology

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

Sensors

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project