Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra-Sensitive Graphene Device For Spintronics

Abstract:
A European team of researchers has developed a graphene-based device capable of detecting tiny magnetic fields with a record sensitivity down to the stray field of few magnetic molecules. The researchers have used graphene as a kind spider's web to chemically trap the molecules and detect their magnetization at the same time. This breakthrough in spintronics opens the ways to applications for ultra-high density storage memories and for molecular sensors.

Ultra-Sensitive Graphene Device For Spintronics

Italy | Posted on June 28th, 2011

The study is published this month in the journal Nano Letters. The work has been performed by scientists from the S3 Center of Istituto Nanoscienze-Cnr, the Insitut Nťel - CNRS, and the Karlsruhe Institute of Technology.

Magnetic molecules, nano-magnets only few billionth of meter small, are considered very promising for spintronics (electronics exploiting also the spin of the electron), since they can store a bit of information in a very small volume. In order to develop a new generation of magnetic memories it is crucial to be able to "read" tiny units that will soon reach the molecular size.

The new ultra-sensitive device realized enables the magnetic reading at the molecular scale. "It is the first time that such tiny objects are detected", says Andrea Candini, researcher at the Istituto Nanoscienze-Cnr, "just to make clear, the previous record of sensitivity has been beaten by a factor of 100".

To realize the device, the team deposited magnetic molecules on a sheet of graphene, the one atom-thick layer of Carbon famous for its amazing properties. Graphene works as a sort of spider's web able to chemically trap the molecules, to capture their magnetic flux and generate a corresponding electrical signal. This result is the outcome of a 3-year long research.. "Firstly, we synthesized molecules suitable to graft the graphene honeycomb lattice, then we tailored the graphene sheet realizing a device of about 10 nanometers in size; finally, we performed electrical measurements at very low temperatures, in order to limit the noise ".

According to the team of researchers, this result "shows that it is possible to use graphene coupled to magnetic molecules to store information, as.the new device works similarly to the spin valve present in a reading head of today's hard disks, but it is much smaller" says Andrea Candini, "We also foresee applications to detect bio-molecules marked with a single magnetic molecule, such as ultra-sensitive sensors to be integrated in a lab-on-a-chip. " Both of these objectives are in line with the goals of large-scale initiatives such as the Flagship Pilot Actions recently launched by the European Commission on related themes.

Full bibliographic information

Graphene Spintronic Devices with Molecular Nanomagnets
Andrea Candini, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer, and Marco Affronte
DOI: 10.1021/nl2006142 http://pubs.acs.org/doi/abs/10.1021/nl2006142

####

About CNR-Consiglio Nazionale delle Ricerche
S3 is a national research center devoted to nanoscience based on a multidisciplinary approach and close interaction between experimental and theoretical activities. It is part of the Istituto Nanoscienze of the Italian Research Council (Cnr). S3 research aims at investigating and designing matter and functions at the nanoscale, as well as understanding and controlling their impact on the properties of macroscopic systems. S3 is located within the scientific campus of the University of Modena and Reggio Emilia and is based on a very close collaboration with several Departments of the University. S3 is a lively and international environment, that attracts excellent young researchers and students, and offers to them facilities designed to meet the laboratory and research needs.

For more information, please click here

Contacts:
Marco Ferrazzoli
00390649933383
mobile 0039 347 0778836

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Memory Technology

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Sensors

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project