Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > High-energy density magnesium batteries for smart electrical grids

Abstract:
Magnesium-based batteries are, in theory, a very attractive alternative to other batteries. Magnesium (Mg) is cheap, safe, lightweight, and its compounds are usually non-toxic. Mg is less expensive (metallic lithium [Li] costs about 24 times more than metallic Mg) because Mg is abundant in the Earth's crust. Mg is safer because it is stable when exposed to the atmosphere.

High-energy density magnesium batteries for smart electrical grids

Morgantown, WV | Posted on June 27th, 2011

Mg provides a theoretical specific capacity of 2,205 ampere-hours/kilogram, making it an attractive high-energy density battery system. Furthermore, it provides two electrons per atom and has electrochemical characteristics similar to Li (12 grams-per-Faraday [g/F], compared to 7 g/F for Li or 23 g/F for sodium). Proper design and architecture should lead to Mg-based batteries with energy densities of 400-1,100 watt-hour per kilogram for an open circuit voltage in the range of 0.8 - 2.1 V, which would make it an attractive candidate for electrical grid energy storage and stationary back-up energy. To make Mg-based batteries practical, researchers at DOE's National Energy Technology Laboratory are developing novel alloys of Mg doped with different elements such as calcium, zinc, and yttrium. These alloys are being produced by melting and casting as well as powder metallurgy. A new displacement reaction hypothesis, based on the reaction of nanostructured transition metal compounds with Mg, has resulted in a thermodynamically favorable reversible displacement reaction of transition metals and Mg-alloys. Recent accomplishments include a new, intermetallic anode compound formulated by melting/casting and synthesis of a new MgMn1-xFexSiO4/C composite, and other transition metal oxide spinel cathode systems. Mg-based electrolytes and other ionic electrolytes have also been developed and are being tested.

####

About DOE
The National Energy Technology Laboratory (NETL), part of DOE’s national laboratory system, is owned and operated by the U.S. Department of Energy (DOE). NETL supports DOE’s mission to advance the national, economic, and energy security of the United States.

NETL implements a broad spectrum of energy and environmental research and development (R&D) programs that will return benefits for generations to come:

Enabling domestic coal, natural gas, and oil to economically power our Nation’s homes, industries, businesses, and transportation …
While protecting our environment and enhancing our energy independence.

NETL has expertise in coal, natural gas, and oil technologies, contract and project management, analysis of energy systems, and international energy issues.

In addition to research conducted onsite, NETL’s project portfolio includes R&D conducted through partnerships, cooperative research and development agreements, financial assistance, and contractual arrangements with universities and the private sector. Together, these efforts focus a wealth of scientific and engineering talent on creating commercially viable solutions to national energy and environmental problems.

For more information, please click here

Contacts:
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
Receptionist, Bldg B26
304-285-4764

412-386-4646

Media Inquiries
Linda Morton
304.285.4543

Copyright © DOE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project