Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sharpening the plasmon nanofocus

By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.
By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

Abstract:
Plasmonics is one of the hottest fields in technology today. Electronic surface waves called plasmons can be generated by confining electromagnetic waves shorter than half the wavelength of incident light, for example at the interface between gold nanostructures and insulating air.

Sharpening the plasmon nanofocus

Berkeley, CA | Posted on June 27th, 2011

If the oscillation frequency of the plasmons and the electromagnetic waves matches, the electromagnetic field can be "nanofocused" within a few hundred cubic nanometers. Nanofocusing can be used with dark-field microscopy to detect low concentrations of biochemical agents, single catalysis in nanoreactors, and other processes. Plasmonic sensing is especially promising for detecting flammable gases like hydrogen, where electrical sensors pose safety issues because of possible sparking.

Researchers with DOE's Lawrence Berkeley National Laboratory in collaboration with colleagues at the University of Stuttgart, Germany, reported the first experimental demonstration of nanofocusing to enhance gas sensing at the single-particle level in the journal Nature Materials. By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

"Metallic nanostructures with sharp corners and edges that form a pointed tip are especially favorable for plasmonic sensing, because the field strengths of the electromagnetic waves are so strongly enhanced over such an extremely small sensing volume," says Laura Na Liu, lead author of the Nature Materials paper, now at Rice University and formerly with the research group of Paul Alivisatos, Berkeley Lab's Director, who led the work.

"We have demonstrated resonant, antenna-enhanced, single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna," says Alivisatos. "Our concept provides a general blueprint for amplifying plasmonic-sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors and for local biosensing."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Paul Preuss
510.486.6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Laboratories

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

No compromises: JILA's short, flexible, reusable AFM probe April 9th, 2014

Peter B. Littlewood appointed Director of Argonne National Laboratory March 26th, 2014

Scientists Track 3D Nanoscale Changes in Rechargeable Battery Material During Operation: First 3D nanoscale observations of microstructural degradation during charge-discharge cycles could point to new ways to engineer battery electrode materials for better performance March 26th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineers develop new materials for hydrogen storage April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Sensors

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Discoveries

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Photonics/Optics/Lasers

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE