Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sharpening the plasmon nanofocus

By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.
By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

Abstract:
Plasmonics is one of the hottest fields in technology today. Electronic surface waves called plasmons can be generated by confining electromagnetic waves shorter than half the wavelength of incident light, for example at the interface between gold nanostructures and insulating air.

Sharpening the plasmon nanofocus

Berkeley, CA | Posted on June 27th, 2011

If the oscillation frequency of the plasmons and the electromagnetic waves matches, the electromagnetic field can be "nanofocused" within a few hundred cubic nanometers. Nanofocusing can be used with dark-field microscopy to detect low concentrations of biochemical agents, single catalysis in nanoreactors, and other processes. Plasmonic sensing is especially promising for detecting flammable gases like hydrogen, where electrical sensors pose safety issues because of possible sparking.

Researchers with DOE's Lawrence Berkeley National Laboratory in collaboration with colleagues at the University of Stuttgart, Germany, reported the first experimental demonstration of nanofocusing to enhance gas sensing at the single-particle level in the journal Nature Materials. By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

"Metallic nanostructures with sharp corners and edges that form a pointed tip are especially favorable for plasmonic sensing, because the field strengths of the electromagnetic waves are so strongly enhanced over such an extremely small sensing volume," says Laura Na Liu, lead author of the Nature Materials paper, now at Rice University and formerly with the research group of Paul Alivisatos, Berkeley Lab's Director, who led the work.

"We have demonstrated resonant, antenna-enhanced, single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna," says Alivisatos. "Our concept provides a general blueprint for amplifying plasmonic-sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors and for local biosensing."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Paul Preuss
510.486.6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Laboratories

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Photonics/Optics/Lasers

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project