Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sharpening the plasmon nanofocus

By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.
By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

Abstract:
Plasmonics is one of the hottest fields in technology today. Electronic surface waves called plasmons can be generated by confining electromagnetic waves shorter than half the wavelength of incident light, for example at the interface between gold nanostructures and insulating air.

Sharpening the plasmon nanofocus

Berkeley, CA | Posted on June 27th, 2011

If the oscillation frequency of the plasmons and the electromagnetic waves matches, the electromagnetic field can be "nanofocused" within a few hundred cubic nanometers. Nanofocusing can be used with dark-field microscopy to detect low concentrations of biochemical agents, single catalysis in nanoreactors, and other processes. Plasmonic sensing is especially promising for detecting flammable gases like hydrogen, where electrical sensors pose safety issues because of possible sparking.

Researchers with DOE's Lawrence Berkeley National Laboratory in collaboration with colleagues at the University of Stuttgart, Germany, reported the first experimental demonstration of nanofocusing to enhance gas sensing at the single-particle level in the journal Nature Materials. By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

"Metallic nanostructures with sharp corners and edges that form a pointed tip are especially favorable for plasmonic sensing, because the field strengths of the electromagnetic waves are so strongly enhanced over such an extremely small sensing volume," says Laura Na Liu, lead author of the Nature Materials paper, now at Rice University and formerly with the research group of Paul Alivisatos, Berkeley Lab's Director, who led the work.

"We have demonstrated resonant, antenna-enhanced, single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna," says Alivisatos. "Our concept provides a general blueprint for amplifying plasmonic-sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors and for local biosensing."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Paul Preuss
510.486.6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

From tobacco to cyberwood March 31st, 2015

Laboratories

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Sensors

From tobacco to cyberwood March 31st, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Discoveries

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Announcements

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Photonics/Optics/Lasers

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE