Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanostructures switch faster

Abstract:
The reaction time of Polymer chains of approximately 100 nanometers in length was thought to be too slow, but a researcher at the University of Duisburg-Essen has disproven that.

Nanostructures switch faster

Germany | Posted on June 22nd, 2011

To describe them as microscopically small would be an understatement, yet they could play a big role in future technology: Polymer chains of approximately 100 nanometers in length could operate as tiny switches in advanced applications. In the past, the reaction time of such nanostructures was thought to be too slow, but a research group at the University of Duisburg-Essen (UDE) under the direction of Dr. Nils Hartmann at the Center for Nanointegration (CeNIDE) has disproven this theory, and their results have been published in the international journal "Angewandte Chemie" (Vol. 123, No. 19).

The polymer Poly(N-Isopropylacrylamide) can also be found in a modified form in diapers. This material keeps the baby's bottom dry by wicking away the moisture˜for that reason it is classified as a "hydrogel". Prof. Dr. Mathias Ulbricht, who holds a Chair in Technical Chemistry at CeNIDE, established routines which allow one to firmly attach such polymer chains to a surface. At temperatures below 32°C the layers absorb water and the structure resembles a brush. When the temperature rises above the critical point, the tiny chains collapse and form dense layers. Depending on the structure, the thickness of the layers decreases by at least one half. In this way, the material could be used to regulate valves in small openings and channels, such as those used in membrane technology or microfluidics. It could be used to measure temperature or moisture, control the release of drugs within the human body, or work as a miniaturized switch for many other processes. With the aid of nanopolymers, small structures could also be created that would react much more quickly than their macroscopic counterparts. According to theory, the water needed for the structural changes would have to travel a shorter diffusion path; however, in many applications speed proved to remain a problem. Repeated tests showed reaction times on the order of seconds˜much too slow for high speed applications.

Dr. Nils Hartmann is group leader at the Chair of Physical Chemistry and a member of CeNIDE. He recognized the primary hurdle in previous experiments: In order to measure the rate of the process, a characterization method is required that is faster than the process itself as well as a manipulation tool that will immediately cause the reaction of the polymer. Hartmann explains that, "The overall technique must be well adapted to the switching process, otherwise itself will cause a delayed reaction of the material." At least one of these two issues have not been recognized in previous research.

Hartmann's team developed a new stroboscopic method whereby the researchers heat the substrate/polymer interface with a laser. When the laser is on, the polymer becomes hot instantaneously; when it is off, the heat dissipates immediately. In order to observe the switching process, an optical microscope with a CCD camera was used. During stroboscopic measurements each frame captured a slightly delayed time interval of the heating and cooling phases. Within 16 seconds this method was able to completely measure the temperature-dependent kinetics. The results revealed that the hydrogel reacts within micro- or milliseconds to the laser-induced change of temperature. Hartmann happily remarked, "This alone is a completely new discovery, but we can also demonstrate that the polymer is not damaged, even after thousands of repetitions, so it is suitable for long-term use."

Other experts also regard these discoveries as extremely significant, which is demonstrated by its publication as a "VIP Paper" in the esteemed journal of "Angewandte Chemie."

Angewandte Chemie (2011) Vol. 123: 4606 - 4609
Angewandte Chemie International Edition (2011) Vol. 50: 4513 ˆ 4516

####

For more information, please click here

Contacts:
Birte Vierjahn

Copyright © CeNIDE, University of Duisburg-Essen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Materials/Metamaterials

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project