Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Dotting the eyes

June 16th, 2011

Dotting the eyes

Abstract:
Nanosys's quantum-dot-enhancement film, as the company calls its product, uses the dots to tweak the spectrum from the LEDs so that it is closer to that of the white light the human eye is used to. It does this, as the product's name suggests, by passing the LED light through a transparent film peppered with quantum dots, which absorb and re-emit some of it.

These dots are of two sizes. The larger re-emits the absorbed energy as red light. The smaller re-emits it as green. The final, filtered image is thus drawn from a broader palette than is permitted to an existing LCD—50% broader, according to Nanosys.

The other advantage Nanosys claims for its technology is that it can be fitted easily into existing manufacturing processes. It is simply a matter of replacing the diffuser layer with a quantum-dot-enhancement film. Making the film itself is easy, too. The dots, composed of a semiconductor called indium phosphide, are sprayed onto a transparent plastic sheet that is then covered with a second sheet. That done, the whole thing is heat-sealed. The film can therefore be manufactured continuously in a reel-to-reel process a bit like printing. This cuts costs enormously.

Source:
economist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanosys

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project