Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultrathin Copper-Oxide Layers Behave Like Quantum Spin Liquid: Surprising discovery may offer clues to emergence of high-temperature superconductivity

Ivan Bozovic
Ivan Bozovic

Abstract:
Magnetic studies of ultrathin slabs of copper-oxide materials reveal that at very low temperatures, the thinnest, isolated layers lose their long-range magnetic order and instead behave like a "quantum spin liquid" — a state of matter where the orientations of electron spins fluctuate wildly. This unexpected discovery by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and collaborators at the Paul Scherrer Institute in Switzerland may offer support for the idea that this novel condensed state of matter is a precursor to the emergence of high-temperature superconductivity — the ability to carry current with no resistance.

Ultrathin Copper-Oxide Layers Behave Like Quantum Spin Liquid: Surprising discovery may offer clues to emergence of high-temperature superconductivity

Upton, NY | Posted on June 10th, 2011

The hope is that this research, just published online in Physical Review Letters*, will lead to a deeper understanding of the physics of high-temperature superconductivity and advance the quest for new and better superconductors for meeting the nation's and world's energy needs.

The idea of quantum spin liquids is credited to Nobel laureate Philip W. Anderson, who also proposed the possible link to the emergence of high-temperature superconductivity when copper-oxide, or "cuprate," materials are doped with mobile charge carriers — that is, when atoms supplying additional electrons or electron vacancies are added. However, some past experimental findings haven't supported this proposal: Without doping, lanthanum-copper-oxide, one of the most studied cuprates, shows a form of long-range magnetic order known as anti-ferromagnetism — where spin orientations on adjacent electrons alternately point in exactly opposite directions — even at room temperature. But the new Brookhaven Lab/Scherrer Institute experiments suggest a different picture when one looks at thin enough layers.

"The crystal structure of lanthanum-copper-oxide is layered; it consists of parallel copper-oxide and lanthanum-oxide sheets," explained Brookhaven physicist Ivan Bozovic, one of the lead authors on the paper. "The interaction among the spins within one copper-oxide plane is strong, while their interaction with the spins in the nearest copper-oxide plane (about 0.66 nanometers away) is ten thousand times weaker. Still, this weak interaction between layers may be sufficient to suppress fluctuations and stabilize the anti-ferromagnetic order."

The key to finding out if there was fluctuation-suppressing interaction among layers was to look for magnetic order in thinner films, with fewer layers and better insulation.

Bozovic used a specialized atomic-layer-by-layer molecular beam epitaxy method he's developed to assemble lanthanum-copper-oxide samples with varying numbers of layers. The layers were well separated and insulated to prevent any "crosstalk." The thickness was controlled with atomic precision and varied digitally, down to a single copper-oxide plane. This precision was critically important for the success of the experiment.

These unique samples were studied at the Paul Scherrer Institute by Elvezio Morenzoni and his team, who had developed an exquisite diagnostic technique called low-energy muon spin spectroscopy to detect and investigate magnetism in such ultrathin layers.

The magnetic measurements revealed that when the slabs contained four or more copper-oxide layers, they showed anti-ferromagnetic ordering — just like thick, bulk crystals of the same materials, and even up to the same temperature. However, thinner slabs that contained just one or two copper-oxide layers showed an unexpected result: "While the magnetic moments, or spins, were still present and had about the same magnitude, there was no long-range static anti-ferromagnetic order, not even on the scale of a few nanometers. Rather, the spins were fluctuating wildly, changing their direction very fast," Bozovic said.

Even more telling, this effect was stronger the lower the temperature of the sample. "That means these fluctuations could not be of thermal origin and must be of quantum origin — quantum objects fluctuate even at zero temperature," Bozovic explained.

"Altogether, this experiment indicates that once a copper-oxide plane is well isolated and not interacting with other such layers, it in fact seems to behave, at low temperature, like some sort of quantum spin liquid." Bozovic said. So perhaps the idea that high-temperature superconductivity emerges from this quantum spin liquid state could, after all, be true.

"We certainly need to do more experiments to test the implications of our discovery and how it relates to this theoretical prediction," Bozovic said.

This work was supported by the DOE Office of Science.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*Scientific paper: Two-Dimensional Magnetic and Superconducting Phases in Metal-Insulator La2-xSrxCuO4 Superlattices Measured by Muon-Spin Rotation

Exploring the Superconducting Transition in Ultra Thin Films

Fleeting Fluctuations in Superconductivity Disappear Close to Transition Temperature

Giant Proximity Effect Enhances High-Temperature Superconductivity

Pinning Down Superconductivity to a Single Layer

Scientists Engineer Superconducting Thin Films

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

Superconductivity

Two spin liquids square off in an iron-based superconductor: Changes in short-range, transient order in competing liquid-like phases precede onset of superconductivity August 5th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Quantum nanoscience

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic