Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imaging of surface plasmons may be a lot easier than you thought

Surface plasmon patterns can be imprinted on metallic nanostructures for subsequent high resolution imaging with standard surface probe techniques.
Surface plasmon patterns can be imprinted on metallic nanostructures for subsequent high resolution imaging with standard surface probe techniques.

Abstract:
An unusual observation turned into a scientific breakthrough when K.U.Leuven researchers investigating the optical properties of nanomaterials discovered that so-called surface plasmons leave imprints on the surface of the nanostructures. This leads to a new type of high resolution microscopy for imaging the electric fields of nanostructures.

Imaging of surface plasmons may be a lot easier than you thought

Leuven, Belgium | Posted on June 8th, 2011

Nanomaterials, consisting of extremely small particles or thin layers, tend to acquire unexpected properties. Optical nanomaterials are a class of materials that have emerged over the last ten years and that have quickly become a hot topic in material science due to their counterintuitive optical behavior and revolutionary potential applications. Optical nanomaterials are mainly based on surface plasmon resonances - the property whereby, in metallic nanostructures, light can collectively excite surface electron waves. These electron waves have the same frequency as light, but much shorter wavelengths, which allow their manipulation at the nanoscale. In other words, with the help of plasmons, light can be captured, modified and even stored in nanostructures. This emerging technology finds applications in surprising areas, ranging from cancer treatment (by targeting cancer cells with nanoparticles that will produce heat when excited) to invisibility (by causing light to follow a trail of nanoparticles, that acts as an invisibility cloak to whatever is underneath them).

The imaging of surface plasmons provides a direct way to map and understand the local electric fields that are responsible for the unusual electromagnetic properties of optical nanomaterials. However, the imaging of surface plasmons is quite challenging. While there are methods to image plasmons with high resolution, they come at a considerable increase in both cost and complexity. But now, Ventsislav K. Valev and his colleagues have demonstrated a powerful and user friendly method for imaging plasmonic patterns in nanostructures.

"We were performing routine characterization of freshly grown samples, when I asked Yogesh, one of our Ph.D. students, to look at a sample that had already been studied. There was absolutely no reason to do this; I just had a hunch," sais Ventsislav Valev. "Surprisingly, this sample appeared to be decorated and I immediately recognized the pattern. Somehow, the optical properties have been imprinted on the surface of the nanostructures."

The scientists indeed found out that upon illuminating nanostructures made of nickel or palladium, the resulting surface plasmon pattern is imprinted on the structures themselves. This imprinting is done through displacing material from the nanostructure to the regions where the plasmon enhancements are the largest. In this manner, the plasmons are effectively decorated, allowing for subsequent imaging with standard surface probe techniques, such as scanning electron microscopy or atomic force microscopy. The imprinting method is quite unique, combining aspects of both imaging and writing techniques.

This research is described in an upcoming paper in the journal Physical Review Letters.

Full bibliographic information

V. K. Valev, A. V. Silhanek, Y. Jeyaram, D. Denkova, B. De Clercq, V. Petkov, X. Zheng, V. Volskiy, W. Gillijns, G. A. E. Vandenbosch, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov and T. Verbiest, "Hotspot Decorations Map Plasmonic Patterns with the Resolution of Scanning Probe Techniques", Phys. Rev. Lett. 106, 226803 (2011), prl.aps.org/abstract/PRL/v106/i22/e226803.

####

For more information, please click here

Contacts:
Griet Van der Perre
+32 16 32 40 08

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Hotspot Decorations Map Plasmonic Patterns with the Resolution of Scanning Probe Techniques”, Phys. Rev. Lett. 106, 226803 (2011)

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Imaging

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Discoveries

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Tools

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project