Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Hitachi Launches World’s Highest Resolution FE-SEM

The new SU9000 Field Emission (FE) Scanning Electron Microscope (SEM) from Hitachi High-Technologies features novel electron optics which allow 0.4 nm resolution to be achieved at an accelerating voltage of 30 kV, with a usable magnification up to 3 Million times. This is believed to be the highest resolution-performance currently achievable on a commercially available instrument.

Hitachi Launches World’s Highest Resolution FE-SEM

Maidenhead, UK | Posted on May 31st, 2011

Featuring a new type of cold FE electron source with excellent stability and brightness and utilising Hitachi's 25 year experience of in-lens detection technology, the SU9000 also provides outstanding ultra-low current and low voltage imaging of sensitive materials. This excellent all-round performance, combined with fast specimen exchange times and the optional scanning transmission (STEM) modes, makes the SU9000 the ideal choice for use in applications ranging from semiconductor devices, electronics, and advanced nanotechnology materials, to life sciences and medicine.

The new, cold FE electron source delivers probe current that is approximately double that of earlier models, giving high quality images with superior S/N and exceptional stability from the moment the electron beam is switched on. The high performance electron optics allow a resolution of 1.2 nm at an accelerating voltage of 1 kV to be achieved without the need for beam deceleration technology. This greatly simplifies low energy imaging and significantly increases sample throughput.

Hitachi's unique dual through-the-lens detection system allows filtering of electrons of different energies, to give the capability for simultaneous multi-signal imaging. This provides extraordinary versatility for the imaging of structures and surface properties.

Using the scanning transmission (STEM) option, the SU9000 guarantees STEM resolution that can allow the lattice structure of graphite (C (002) d=0.34 nm) to be imaged at 30 kV accelerating voltage. The unique STEM detection system allows simultaneous bright field and dark field imaging and annular DF detection with selectable scattering angle. Up to 4 signals can be simultaneously displayed.

The SU9000 features side-entry sample insertion and can be ready for high resolution imaging in as little as 6 minutes or less; the fast exchange times benefiting from the high stability of the electron beam.

An order of magnitude better vacuum around the sample minimizes contamination, enhancing resolution and eliminating the need for an additional cold trap for cryo work on biological samples.

Ease of use is guaranteed through a new user interface, while a large 24.1-inch widescreen monitor offers a comfortable environment for both operating the instrument and viewing images.


For more information, please click here

Press Enquiries:
In Press Public Relations Ltd
PO Box 24
Royston, Herts, SG8 6TT
Tel: +44 (0)1763 262621


Other Enquiries:
Hitachi High-Technologies Corporation
Whitebrook Park, Lower Cookham Road
Maidenhead, Berkshire SL6 8YA
Tel: + 44 (0) 800 316 1500

Copyright © Hitachi High-Technologies Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014


Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014


Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE