Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Removable 'Cloak' for Nanoparticles Helps Them Target Tumors

Abstract:
Chemical engineers at the Massachusetts Institute of Technology have designed a new type of drug-delivery nanoparticle that exploits a trait shared by almost all tumors: They are more acidic than healthy tissues. Such particles could target nearly any type of tumor, and can be designed to carry virtually any type of drug, says Paula Hammond, a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence and leader of the investigators who built these new nanoparticles. The results of their experiments were published in the journal ACS Nano.

Removable 'Cloak' for Nanoparticles Helps Them Target Tumors

Bethesda, MD | Posted on May 29th, 2011

Like most other drug-delivering nanoparticles, the new MIT particles are cloaked in a polymer layer that protects them from being degraded by the bloodstream. In this case, however, the MIT team designed that outer layer to fall off after entering the slightly more acidic environment near a tumor. Shedding that protective layers reveals another layer that is able to penetrate individual tumor cells.

The new MIT approach differs from that taken by most nanoparticle designers who typically try to target their particles to a tumor by decorating them with molecules that bind specifically to proteins found on the surface of cancer cells. The problem with that strategy is that it's difficult to find the right target, that is, a molecule found on all of the cancer cells in a particular tumor but not on healthy cells. In addition, a target that works for one type of cancer might not work for another, limiting the utility of the resulting drug. Instead, Dr. Hammond and her colleagues decided to take advantage of tumor acidity, which is a byproduct of a tumor's revved-up metabolism.

To build their targeted particles, the researchers used a technique called "layer-by-layer assembly." This means each layer can be tailored to perform a specific function. When the outer layer, made of polyethylene glycol, or PEG, breaks down in the tumor's acidic environment, a positively charged middle layer is revealed, one that helps the nanoparticle to breach the negatively charged cell membrane. The nanoparticles' innermost layer can be a polymer that carries a cancer drug, or a quantum dot that could be used for imaging, or virtually anything else that the designer might want to deliver, said Dr. Hammond. Other researchers have tried to design nanoparticles that take advantage of tumors' acidity, but Dr. Hammond's particles are the first that have been successfully tested in living animals.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives

ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Layer-by-Layer Nanoparticles with a pH-Sheddable Layer for in Vivo Targeting of Tumor Hypoxia."

Related News Press

News and information

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Nanodiamonds Are Forever: A UCSB professorís research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Nanomedicine

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Discoveries

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Announcements

Nanodiamonds Are Forever: A UCSB professorís research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE