Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Defect in Graphene May Present Bouquet of Possibilities

Flower-like defects in graphene can occur during the fabrication process. The NIST team captured images of one of the defects (figures a and c) using a scanning tunneling microscope. A simulated image from their computer models (figure b) shows excellent agreement.
Credit: Cockayne,Stroscio/NIST.
Flower-like defects in graphene can occur during the fabrication process. The NIST team captured images of one of the defects (figures a and c) using a scanning tunneling microscope. A simulated image from their computer models (figure b) shows excellent agreement.
Credit: Cockayne,Stroscio/NIST.

Abstract:
A class of decorative, flower-like defects in the nanomaterial graphene could have potentially important effects on the material's already unique electrical and mechanical properties, according to researchers at the National Institute of Standards and Technology (NIST) and Georgia Tech. In a new paper,* the team for the first time describes a family of seven defects that could occur naturally or be induced to occur in graphene, one of which already has been observed.

Defect in Graphene May Present Bouquet of Possibilities

Gaithersburg, MD | Posted on May 25th, 2011

Graphene is renowned for its strength and conductivity, both of which are a result of its structure. For the most part, graphene is a featureless plane of carbon atoms arranged in a honeycomb lattice.

According to NIST Fellow Joseph Stroscio, defects can appear due to the movement of the carbon atoms at high temperatures when producing graphene by heating silicon carbide under ultrahigh vacuum. The easiest, i.e. requiring the least amount of energy, rearrangements graphene can make are to switch from six-member carbon rings to rings containing five or seven atoms, which keeps all the carbon atoms happy with no unsatisfied bonds. The NIST researchers have discovered that stringing five and seven member rings together in closed loops creates a new type of defect or grain boundary loop in the honeycomb lattice.

According to NIST researcher Eric Cockayne, the fabrication process plays a big role in creating these defects.

"As the graphene forms under high heat, sections of the lattice can come loose and rotate," Cockayne says. "As the graphene cools, these rotated sections link back up with the lattice, but in an irregular way. It's almost as if patches of the graphene were cut out with scissors, turned clockwise, and made to fit back into the same place, only it really doesn't fit, which is why we get these flowers."

The exceedingly rigid lattice already is stronger than steel, but the defects might allow it a little flexibility, making it even more resilient to tearing or fracturing.

With more experimentation, Cockayne says, researchers should be able to correlate the appearance of defects with variations in growth conditions, which should make it possible to either avoid defects entirely or produce them at will.

Moreover, while the flower defect is composed of six pairs of five- and seven-atom rings, Cockayne and the NIST team's modeling of graphene's atomic structure suggests there might be a veritable bouquet of flower-like configurations. These configurations—seven in all—would each possess their own unique mechanical and electrical properties.
* E. Cockayne, G. Rutter, N. Guisinger, J. Crain, P. First and J. Stroscio. Grain boundary loops in graphene. Physical Review B. 83, 195425 (2011). DOI: 10.1103/PhysRevB.83.195425

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
(301) 975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Graphene/ Graphite

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project