Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spinning new materials in a thread: New technique could enable creation of a variety of fiber-based electronic and photonic devices

Samples of materials that have been made into fibers in the lab of MIT’s Yoel Fink. The initial material is made into a 'preform,' in the lower portion, which is then heated and drawn out like taffy into a fiber from the top, preserving the arrangement of materials within the structure.
Photo: Greg Hren/RLE
Samples of materials that have been made into fibers in the lab of MIT’s Yoel Fink. The initial material is made into a 'preform,' in the lower portion, which is then heated and drawn out like taffy into a fiber from the top, preserving the arrangement of materials within the structure.
Photo: Greg Hren/RLE

Abstract:
David L. Chandler, MIT News Office

Researchers at MIT have succeeded in making a fine thread that functions as a diode, a device at the heart of modern electronics. This feat — made possible by a new approach to a type of fiber manufacturing known as fiber drawing — could open up possibilities for fabricating a wide variety of electronic and photonic devices within composite fibers, using a variety of materials.

Spinning new materials in a thread: New technique could enable creation of a variety of fiber-based electronic and photonic devices

Cambridge, MA | Posted on May 21st, 2011

Fiber-drawing techniques are used to produce the optical fibers behind much of today's broadband communications, but these techniques have been limited to materials that can partially melt and stretch like taffy at the temperatures being used for drawing the fibers. The new work demonstrates a way of synthesizing new materials during the fiber-making process, including materials whose melting points are far higher than the temperatures used to process the fibers. The simple proof-of-concept demonstration carried out by the MIT researchers could open the door to a wide array of sophisticated devices based on composite fibers, they say.

The findings, part of a doctoral research project in materials science by Nicholas Orf, have been published in the journal Proceedings of the National Academy of Sciences. The paper was co-authored by Orf (now a postdoc at MIT); John Joannopoulos, the Francis Wright Davis Professor of Physics; Yoel Fink, associate professor; Marc Baldo, associate professor; Ofer Shapira, a research scientist in the Research Laboratory of Electronics; postdoc Fabien Sorin; and Sylvain Danto, who was a postdoc at the time. The work was carried out in Fink's research group.

All previous work on fiber-drawing ended up with the same materials that were there to begin with, just in a different shape, Orf says, adding: "In this method, new materials are formed during the drawing process."

Fiber drawing involves preparing a "preform" of materials, such as a large glass rod resembling an oversized model of the fiber to be produced. This preform is heated until it reaches a taffy-like consistency and then pulled into a thin fiber. The materials comprising the preform remain unchanged as its dimensions are drastically reduced.

In the current research, the preform contained selenium, sulfur, zinc and tin, arranged within a coating of polymer material. The drawing process, carried out at a temperature of just 260 degrees Celsius (500 degrees Fahrenheit), combined these materials to form fibers containing zinc selenide, even though that compound has a melting point of 1,530 degrees Celsius (2,786 degrees Fahrenheit).

The resulting fiber was a simple but functional semiconductor device called a diode — a sort of one-way valve for electrical current, allowing electrons to flow through it in only one direction. The diode, never before made by such a method, is a basic building block for electrical circuits.

"This shows that many more kinds of materials can be incorporated into fibers than ever before," Orf says. Because the physical arrangements placed in the preform are preserved in the drawn fiber, it should ultimately be possible to incorporate more complex electronic circuits within the structure of the fiber itself.

Such fibers might find uses as sensors for light, temperature or other environmental conditions, Orf says. Or the fibers could then be woven, such as to make a solar-cell fabric, he says.

Fink says his research group has been working for more than a decade on expanding the kinds of materials and structures that can be incorporated into fibers. He says that despite the rapid progress made in the last few decades in various forms of electronics, "there has been little progress in advancing the overall functionality and sophistication of fibers and fabrics … one of the earliest forms of human expression."

The group's research, he says, has stemmed from the basic question, "How sophisticated can a fiber be?" Over the years they have incorporated more and more materials, structures and functions into fibers. But one of the biggest limitations has been the set of materials that could be incorporated into the fibers; this new work has greatly expanded that list. The work shows that it is possible, Fink says, "to use the fiber draw as a way to synthesize new materials. It's the first time this has been demonstrated anywhere."

Zinc selenide, the specific compound formed in this drawing process, is an important material for both its electronic and its optical properties, Orf says. Such fibers might have uses in new photonic circuits, which use light beams to perform functions similar to those carried out by flowing electrons in electronic circuits.

While this experiment produced 15 individual diode devices in the fiber, each separate from the others, Fink says that through continuing research, "We think you could probably do hundreds" and even interconnect them to form electronic circuits.

Professor John Ballato, director of the Center for Optical Materials Science and Engineering Technologies at Clemson University, adds, "There has been growing international interest in semiconducting optical fibers over the past few years. Such fibers offer the potential to marry the optoelectronic benefits of semiconductors, [which] we know from the silicon photonics and integrated circuit worlds, with the light guidance and long path lengths of optical fibers." The new MIT work is particularly significant, he says, because of "the utilization of the fiber as a micro solid-state chemical reactor to realize materials that are not generally amenable to direct fiber fabrication."

Ballato, who was not involved in this research, adds that a similar technique has been used to produce reactions using gases, but that to the best of his knowledge, "this is the first … to extend this concept to the solid state, where indeed a more bountiful opportunity exists to achieve a wider range of materials." The process is so flexible and has the potential to be used with such a range of materials, he says, that "it can be considered an important step to a ‘fiber that does everything' — creates, propagates, senses and manipulates photons, electrons [and] phonons."

The work was supported by the U.S. Army through the MIT Institute for Soldier Nanotechnologies and by the Materials Research Science and Engineering Center Program of the National Science Foundation.

####

For more information, please click here

Contacts:
MIT news
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
Tel 617.253.2700
TTY 617.258.9344

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project