Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST 'Nanowire' Measurements Could Improve Computer Memory

In this schematic image (top) and transmission electron micrograph, a silicon nanowire is shown surrounded by a stack of thin layers of material called dielectrics, which store electrical charge. NIST scientists determined the best arrangement for this dielectric stack for the optimal construction of silicon nanowire-based memory devices.
Credit: Schematic Zhu, GMU. TEM Bonevich, NIST.
In this schematic image (top) and transmission electron micrograph, a silicon nanowire is shown surrounded by a stack of thin layers of material called dielectrics, which store electrical charge. NIST scientists determined the best arrangement for this dielectric stack for the optimal construction of silicon nanowire-based memory devices.

Credit: Schematic Zhu, GMU. TEM Bonevich, NIST.

Abstract:
A recent study* at the National Institute of Standards and Technology (NIST) may have revealed the optimal characteristics for a new type of computer memory now under development. The work, performed in collaboration with researchers from George Mason University (GMU), aims to optimize nanowire-based charge-trapping memory devices, potentially illuminating the path to creating portable computers and cell phones that can operate for days between charging sessions.

NIST 'Nanowire' Measurements Could Improve Computer Memory

Gaithersburg, MD | Posted on May 20th, 2011

The nascent technology is based on silicon formed into tiny wires, approximately 20 nanometers in diameter. These "nanowires" form the basis of memory that is non-volatile, holding its contents even while the power is off—just like the flash memory in USB thumb drives and many mp3 players. Such nanowire devices are being studied extensively as the possible basis for next-generation computer memory because they hold the promise to store information faster and at lower voltage.

Nanowire memory devices also hold an additional advantage over flash memory, which despite its uses is unsuitable for one of the most crucial memory banks in a computer: the local cache memory in the central processor.

"Cache memory stores the information a microprocessor is using for the task immediately at hand," says NIST physicist Curt Richter. "It has to operate very quickly, and flash memory just isn't fast enough. If we can find a fast, non-volatile form of memory to replace what chips currently use as cache memory, computing devices could gain even more freedom from power outlets—and we think we've found the best way to help silicon nanowires do the job."

While the research team is by no means the only lab group in the world working on nanowires, they took advantage of NIST's talents at measurement to determine the best way to design charge-trapping memory devices based on nanowires, which must be surrounded by thin layers of material called dielectrics that store electrical charge. By using a combination of software modeling and electrical device characterization, the NIST and GMU team explored a wide range of structures for the dielectrics. Based on the understanding they gained, Richter says, an optimal device can be designed.

"These findings create a platform for experimenters around the world to further investigate the nanowire-based approach to high-performance non-volatile memory," says Qiliang Li, assistant professor of Electrical and Computer Engineering at GMU. "We are optimistic that nanowire-based memory is now closer to real application."
* X. Zhu, Q. Li, D. Ioannou, D. Gu, J.E. Bonevich, H. Baumgart, J. Suehle and C.A. Richter. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells. Nanotechnology, May 16, 2011, 22 254020 doi: 10.1088/0957-4484/22/25/254020.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project