Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotechnological innovations can improve water

Abstract:
Research teams are trying different approaches within the nanotechnological field to improve water membrane technologies. One of these is to improve water purification by using nature's own water-transporting channels, aquaporins. However, constructing suitable membranes for industrial processes is a challenge.

Nanotechnological innovations can improve water

Italy | Posted on May 13th, 2011

Membranes for water purification are used in many applications and different types of membranes are being developed at the moment. No membrane can filter and purify water entirely, but improvements using novel kinds of membranes are made.

In the European Commission-funded project MEMBAQ (Incorporation of Aquaporins in Membranes for Industrial Applications) researchers are taking advantage of a unique structure nature has already created, when they are developing a nanotechnological invention. They are inspired by the cell membranes' water-transporting channels made up of proteins called aquaporins. Only pure H2O molecules are let through. Different kinds of water filtration membranes have been incorporated with these aquaporins, in the pursuit of a revolutionary nanobiotechnological water membrane technology that can remove particles and pathogens from the water much more efficiently, compared to other membranes on the market.

The main challenge at the moment is to make membranes applicable to industrial processes. However, the scientists have come a long way by supporting the aquaporins with a flexible and tissue-like hydrogel layer and then stabilizing this layer with a perforated Teflon film, capable of holding hydrogel and aquaporin droplets. The project's aim is to develop membranes capable of, for example, recycle wastewater into drinking water and desalinate water. In addition, this technology could serve customers working on semiconductors, since they use a lot of ultra pure water, and might make this industry greener by reducing the energy needed during the water purification process. If everything goes according to plans, the customers will be offered a membrane that is five to ten times more efficient than membranes currently available on the market.

Another way of improving water purification through a nanotechnological approach has been developed by researchers at Stanford University. They have electrified a cotton membrane, coated with silver nanowires and nanotubes, to kill pathogens. This electrical mechanism is used instead of size exclusion. The bigger pores let the water flow through about 80,000 times faster than bacteria-trapping membranes allow and also make it possible to avoid clogging of the membranes. Multiple filter stages are needed, since one electrified membrane only kills 98 percent of the pathogens. The researchers have shown that the electricity required to run current through the membrane could be as low as a fifth of a filtration pump's energy need, when a comparable water amount is let through.

The market for different membranes that can purify water is growing and customers might soon have the possibility to pick a membrane that better suit their needs.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +39 0272002572
Fax: +39 0272002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Water

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Research partnerships

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE