Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnological innovations can improve water

Abstract:
Research teams are trying different approaches within the nanotechnological field to improve water membrane technologies. One of these is to improve water purification by using nature's own water-transporting channels, aquaporins. However, constructing suitable membranes for industrial processes is a challenge.

Nanotechnological innovations can improve water

Italy | Posted on May 13th, 2011

Membranes for water purification are used in many applications and different types of membranes are being developed at the moment. No membrane can filter and purify water entirely, but improvements using novel kinds of membranes are made.

In the European Commission-funded project MEMBAQ (Incorporation of Aquaporins in Membranes for Industrial Applications) researchers are taking advantage of a unique structure nature has already created, when they are developing a nanotechnological invention. They are inspired by the cell membranes' water-transporting channels made up of proteins called aquaporins. Only pure H2O molecules are let through. Different kinds of water filtration membranes have been incorporated with these aquaporins, in the pursuit of a revolutionary nanobiotechnological water membrane technology that can remove particles and pathogens from the water much more efficiently, compared to other membranes on the market.

The main challenge at the moment is to make membranes applicable to industrial processes. However, the scientists have come a long way by supporting the aquaporins with a flexible and tissue-like hydrogel layer and then stabilizing this layer with a perforated Teflon film, capable of holding hydrogel and aquaporin droplets. The project's aim is to develop membranes capable of, for example, recycle wastewater into drinking water and desalinate water. In addition, this technology could serve customers working on semiconductors, since they use a lot of ultra pure water, and might make this industry greener by reducing the energy needed during the water purification process. If everything goes according to plans, the customers will be offered a membrane that is five to ten times more efficient than membranes currently available on the market.

Another way of improving water purification through a nanotechnological approach has been developed by researchers at Stanford University. They have electrified a cotton membrane, coated with silver nanowires and nanotubes, to kill pathogens. This electrical mechanism is used instead of size exclusion. The bigger pores let the water flow through about 80,000 times faster than bacteria-trapping membranes allow and also make it possible to avoid clogging of the membranes. Multiple filter stages are needed, since one electrified membrane only kills 98 percent of the pathogens. The researchers have shown that the electricity required to run current through the membrane could be as low as a fifth of a filtration pump's energy need, when a comparable water amount is let through.

The market for different membranes that can purify water is growing and customers might soon have the possibility to pick a membrane that better suit their needs.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +39 0272002572
Fax: +39 0272002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Water

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Research partnerships

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project