Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Arbornano launches nine new projects to develop high-performance products using forest-derived nanomaterials

Abstract:
Cross-sector and academic research collaboration to support the development of competitive manufactured products and revitalize the Canadian forestry sector.

Arbornano launches nine new projects to develop high-performance products using forest-derived nanomaterials

Pointe-Claire, Canada | Posted on May 10th, 2011

ArboraNano, a member of Canada's Business-Led Networks of Centres of Excellence program, is pleased to announce the launch of nine new research and development (R&D) projects targeting innovative paper grades, improved foams and nanocomposite developments using forest nanomaterials. Seven of these projects will focus on the use of non-toxic and environmentally-friendly nanocrystalline cellulose (NCC). The projects are to be carried out over the next two years by industrial scientists and engineers from the pulp and paper, automotive, machinery and engineering sectors, as well as researchers from Canadian universities and Canadian research institutes.

Kruger, Bio Vision Technology Inc., Groupe Laperrière & Verreault Inc. (GL&V), Woodbridge Foam Corporation, Tembec, Noram Engineering and Constructors Ltd., and FPInnovations are the industrial partners involved in the projects. Provincial agencies supporting this work include the Government of Alberta Strategic Research Program on NCC Applications, Alberta Innovates- BioSolutions, the Ontario Bio-Auto Council and NanoQuebec. Academic and institutional partners include the University of Alberta, Université du Québec à Trois-Rivières (UQTR), Université Laval, University of British Columbia, Université du Québec en Abitibi-Témiscamingue (UQAT), McGill University, and the Nanotechnology Institute for Nanotechnology (NINT).

"So far, ArboraNano has been working on some very promising projects with partners in the oil and gas, printing, and wood coatings industries," said Ron Crotogino, President and Chief Executive Officer of ArboraNano. "The addition of these nine new projects clearly reflects our strong commitment to encouraging cross-sector R&D in support of the development of global competitive products by Canadian manufacturers, and to revitalizing the Canadian forestry sector," he continued.

ArboraNano's contribution to these projects totals $3.35 million with matching contributions from industry and provincial organizations. These projects are clearly aligned with the ArboraNano Network's mission, which is to build multi-industry teams focused on the development of novel or improved products using Canadian forest-derived materials and nanotechnology. They are also focused on AbroraNano's vision of enhancing Canada's industrial competitiveness.

Paper and packaging projects
Among the projects recently launched with pulp & paper partners, three will focus on creating "greener" paper grades, paperboards and coatings with performance properties that will compare favorably to existing products. More specifically, one project aims to create new paper grades from mechanical pulp by maximizing retention of nanomaterial on the surface of paper. Another project is seeking to substitute fossil fuel-based latex with NCC in coatings formulations for lightweight coated paper. A third project strives to reduce weight and fiber consumption by reinforcing paperboard packaging using cellulose nanofilaments. The fourth project will be investigating the manufacture of nanoporous paper membranes with applications in various industrial sectors.

Automotive projects

The goal of the two recently launched projects in the automotive industry is to develop performance-enhancing additives used in the manufacture of polyurethane foam and construction products particularly for load building in seat cushion foam. Researchers will also be investigating the use of NCC as a potential unique performance enhancing agent in other polymer systems used in the manufacturing of automotive and construction products.

Nanocomposite and nanofluids projects

The creation of novel nanocomposites is a key area of research for many of ArboraNano's industrial partners. Two new projects aimed at supporting the development of nanocomposites have been launched. Multi-scale modeling of the structure and thermodynamics of chemically modified NCC will be used to obtain a rational design of NCC-based nanocomposites, gels, and foams. Another project will develop new approaches to customize the compatibility of NCC with a variety of polymer matrices. A third project will seek to improve the properties of wood finishing oils through the addition of various nanoparticles.

About nanocrystalline cellulose (NCC)
Nanocrystalline cellulose (NCC) is a wood-derived nanomaterial, consisting of individual cellulose crystals. NCC is available in several forms, including powder, gel, and suspension. It is stronger and lighter than steel, is recyclable and sustainable, and testing shows that it is non-toxic.

NCC can be used in a number of applications, from reinforced polymers to improved textiles to advanced composite materials. ArboraNano is encouraging scientists and engineers to use their creativity in researching and developing applications for products based on NCC.

In addition to research projects on paper, cardboard, foams, and polymer systems, research is also being done to see how NCC can be used in coatings, adhesives, plastics, drilling mud and chemical additives for industrial applications, such as the manufacture of paints, pigments and inks.

Currently, Canada has an 18- to 24-month global lead in the commercial production of NCC as a 1 ton/day demonstration plant located in Windsor, Quebec enters the final phases of construction. Startup is planned for Fall 2011.

Nanofibrillated cellulose (NFC) and cellulose nanofilaments (CNF) are also wood-derived nanomaterials. However, unlike NCC, these materials are not composed of individual crystals but of fibrils containing both crystalline and amorphous cellulose.

####

About ArboraNano
ArboraNano is the Canadian Forest NanoProducts Network made possible by Canada’s Business-led Networks of Centres of Excellence program, FPInnovations and NanoQuébec. A not-for-profit network, ArboraNano is made up of members representing multiple business sectors, universities and non-profit organizations. Calling on forest sector and nanotechnology expertise, the Network is exploring opportunities for the innovation of advanced manufactured products that are enhanced through the use of nanocrystalline cellulose (NCC) and other nanomaterials made from wood fiber, by bringing together nanotechnology-focused scientists and engineers from various industries. ArboraNano’s goal is to create a new Canadian bioeconomy based on innovative, highly‐engineered, carbon‐neutral products containing nanomaterials.

For more information, please click here

Contacts:
Marise Daigle
Ron Crotogino
Simard Hamel Communications
President and Chief Executive Officer

ArboraNano Network
514-287-9811, extension 11


Catherine Houde
514-630-4111
Simard Hamel Communications

514-287-9811, extension 14

Copyright © ArboraNano

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Project Information - Project abstracts and corresponding industrial and academic partners, as well as lead project investigators are available at:

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Materials/Metamaterials

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Food/Agriculture/Supplements

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Bacteria Cellulose, Natural Polymers with Applications in Various Industries Synthesized in Iran June 22nd, 2015

High-tech nanofibres could help nutrients in food hit the spot June 17th, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project