Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Good Eggs: Nanomagnets are Food for Thought on Computer Memories

Collage of NIST "nano-eggs" — simulated magnetic patterns in NIST’s egg-shaped nanoscale magnets.
Collage of NIST "nano-eggs" — simulated magnetic patterns in NIST’s egg-shaped nanoscale magnets.

Abstract:
Magnetics researchers at the National Institute of Standards and Technology (NIST) colored lots of eggs recently. Bunnies and children might find the eggs a bit small—in fact, too small to see without a microscope. But these "eggcentric" nanomagnets have another practical use, suggesting strategies for making future low-power computer memories.

Good Eggs: Nanomagnets are Food for Thought on Computer Memories

Boulder, CO | Posted on April 28th, 2011

For a study described in a new paper,* NIST researchers used electron-beam lithography to make thousands of nickel-iron magnets, each about 200 nanometers (billionths of a meter) in diameter. Each magnet is ordinarily shaped like an ellipse, a slightly flattened circle. Researchers also made some magnets in three different egglike shapes with an increasingly pointy end. It's all part of NIST research on nanoscale magnetic materials, devices and measurement methods to support development of future magnetic data storage systems.

It turns out that even small distortions in magnet shape can lead to significant changes in magnetic properties. Researchers discovered this by probing the magnets with a laser and analyzing what happens to the "spins" of the electrons, a quantum property that's responsible for magnetic orientation. Changes in the spin orientation can propagate through the magnet like waves at different frequencies. The more egg-like the magnet, the more complex the wave patterns and their related frequencies. (Something similar happens when you toss a pebble in an asymmetrically shaped pond.) The shifts are most pronounced at the ends of the magnets.

To confirm localized magnetic effects and "color" the eggs, scientists made simulations of various magnets using NIST's object-oriented micromagnetic framework (OOMMF).** (See graphic.) Lighter colors indicate stronger frequency signals.

The egg effects explain erratic behavior observed in large arrays of nanomagnets, which may be imperfectly shaped by the lithography process. Such distortions can affect switching in magnetic devices. The egg study results may be useful in developing random-access memories (RAM) based on interactions between electron spins and magnetized surfaces. Spin-RAM is one approach to making future memories that could provide high-speed access to data while reducing processor power needs by storing data permanently in ever-smaller devices. Shaping magnets like eggs breaks up a symmetric frequency pattern found in ellipse structures and thus offers an opportunity to customize and control the switching process.

"For example, intentional patterning of egg-like distortions into spinRAM memory elements may facilitate more reliable switching," says NIST physicist Tom Silva, an author of the new paper.
"Also, this study has provided the Easter Bunny with an entirely new market for product development."
---------------------------------
* H.T. Nembach, J.M. Shaw, T.J. Silva, W.L. Johnson, S.A. Kim, R.D. McMichael and P. Kabos. Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets. Physical Review B 83, 094427, March 28, 2011.

####

For more information, please click here

Contacts:
Laura Ost
(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

** See http://math.nist.gov/oommf/

Related News Press

News and information

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project