Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.
New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.

Abstract:
New 3D simulations of magnetic reconnection published in the scientific journal Nature Physics describes how "flux ropes" are spontaneously generated; work supports upcoming NASA spaceflight.

Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

Los Alamos, NM | Posted on April 16th, 2011

In this week's Nature Physics, Los Alamos physicist Bill Daughton and a team of scientists present a new theory of how magnetic reconnection proceeds in high-temperature plasmas.

Magnetic reconnection is a fundamental process in physics, the continuous breaking and rearrangement of magnetic field lines in a plasma-a hot ionized gas. Understanding reconnection phenomena has broad implications in how Earth's magnetosphere functions, how solar flares and coronal mass ejections work-and how they might affect our planet, and a wide variety of astrophysical settings.

This new theory was developed to better explain recent large-scale three-dimensional kinetic simulations that describe the physics of this process at the most basic level.

"Previous kinetic studies have been primarily limited to simple two-dimensional models," said Daughton. "A team of researchers from across the Laboratory employed a first-principles approach to study the dynamic evolution in three dimensions using the plasma simulation code VPIC, a particle-in-cell plasma physics code."

Daughton continues, "These 3-D calculations required a thousand times more computational resources than the 2-D models. This only became possible recently due to the development of petascale supercomputers, first with Roadrunner at Los Alamos and more recently on the Kraken machine at Oak Ridge National Laboratory. Funding from the LANL Laboratory Directed Research & Development program has allowed us to exploit these powerful new machines as soon as they became available."

The Nature Physics article reports the new results are drastically different than the previous 2-D models and feature the formation and turbulent interaction of helical magnetic structures known as flux ropes. Early researchers speculated that such flux ropes may form during the initial development of magnetic reconnection, but the new results demonstrate that the vast majority of these structures are produced within intense electron current sheets that form at later time. The key features of this complex evolution are explained by the new theory described in this paper.

These results have important implications for spacecraft observations of magnetic reconnection in the magnetosphere and in the solar wind. Many of these new predictions should be observable by NASA's upcoming Magnetospheric Multiscale (MMS) mission-a group of four spacecraft that will make high-quality measurements of magnetic reconnection as it occurs in the magnetosphere. Los Alamos researchers were recently awarded a three-year $1.6 million grant from NASA to continue these research efforts in support of the MMS mission, which will launch in 2014.

The physics of magnetic reconnection is central to understanding the processes that control the magnetosphere, a kind of "global shield" that protects Earth from deadly cosmic radiation coming from solar flares and the solar wind.

Understanding reconnection physics may lead to better models of the near-earth space environment and the potential harmful effects to both space travelers and satellites. "These are really dramatic large-scale simulation results," said Daughton. "Together with theory, laboratory experiments, and new satellite observations, we believe these simulations could change some important ideas of how magnetic reconnection occurs."

The research team includes Daughton, Vadim Roytershteyn, Lin Yin, Brian Albright, Kevin Bowers, and Ben Bergen at Los Alamos as well as Homa Karimabadi at the University of California, San Diego.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

YouTube video at:

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Laboratories

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Physics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Aerospace/Space

Graphenea embarks on a new era April 16th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

National Space Society Awards Physicist Kip Thorne Its Mass Media Space Pioneer Award April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE