Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.
New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.

Abstract:
New 3D simulations of magnetic reconnection published in the scientific journal Nature Physics describes how "flux ropes" are spontaneously generated; work supports upcoming NASA spaceflight.

Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

Los Alamos, NM | Posted on April 16th, 2011

In this week's Nature Physics, Los Alamos physicist Bill Daughton and a team of scientists present a new theory of how magnetic reconnection proceeds in high-temperature plasmas.

Magnetic reconnection is a fundamental process in physics, the continuous breaking and rearrangement of magnetic field lines in a plasma-a hot ionized gas. Understanding reconnection phenomena has broad implications in how Earth's magnetosphere functions, how solar flares and coronal mass ejections work-and how they might affect our planet, and a wide variety of astrophysical settings.

This new theory was developed to better explain recent large-scale three-dimensional kinetic simulations that describe the physics of this process at the most basic level.

"Previous kinetic studies have been primarily limited to simple two-dimensional models," said Daughton. "A team of researchers from across the Laboratory employed a first-principles approach to study the dynamic evolution in three dimensions using the plasma simulation code VPIC, a particle-in-cell plasma physics code."

Daughton continues, "These 3-D calculations required a thousand times more computational resources than the 2-D models. This only became possible recently due to the development of petascale supercomputers, first with Roadrunner at Los Alamos and more recently on the Kraken machine at Oak Ridge National Laboratory. Funding from the LANL Laboratory Directed Research & Development program has allowed us to exploit these powerful new machines as soon as they became available."

The Nature Physics article reports the new results are drastically different than the previous 2-D models and feature the formation and turbulent interaction of helical magnetic structures known as flux ropes. Early researchers speculated that such flux ropes may form during the initial development of magnetic reconnection, but the new results demonstrate that the vast majority of these structures are produced within intense electron current sheets that form at later time. The key features of this complex evolution are explained by the new theory described in this paper.

These results have important implications for spacecraft observations of magnetic reconnection in the magnetosphere and in the solar wind. Many of these new predictions should be observable by NASA's upcoming Magnetospheric Multiscale (MMS) mission-a group of four spacecraft that will make high-quality measurements of magnetic reconnection as it occurs in the magnetosphere. Los Alamos researchers were recently awarded a three-year $1.6 million grant from NASA to continue these research efforts in support of the MMS mission, which will launch in 2014.

The physics of magnetic reconnection is central to understanding the processes that control the magnetosphere, a kind of "global shield" that protects Earth from deadly cosmic radiation coming from solar flares and the solar wind.

Understanding reconnection physics may lead to better models of the near-earth space environment and the potential harmful effects to both space travelers and satellites. "These are really dramatic large-scale simulation results," said Daughton. "Together with theory, laboratory experiments, and new satellite observations, we believe these simulations could change some important ideas of how magnetic reconnection occurs."

The research team includes Daughton, Vadim Roytershteyn, Lin Yin, Brian Albright, Kevin Bowers, and Ben Bergen at Los Alamos as well as Homa Karimabadi at the University of California, San Diego.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

YouTube video at:

Related News Press

Physics

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Laboratories

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Aerospace/Space

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project