Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.
New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.

Abstract:
New 3D simulations of magnetic reconnection published in the scientific journal Nature Physics describes how "flux ropes" are spontaneously generated; work supports upcoming NASA spaceflight.

Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

Los Alamos, NM | Posted on April 16th, 2011

In this week's Nature Physics, Los Alamos physicist Bill Daughton and a team of scientists present a new theory of how magnetic reconnection proceeds in high-temperature plasmas.

Magnetic reconnection is a fundamental process in physics, the continuous breaking and rearrangement of magnetic field lines in a plasma-a hot ionized gas. Understanding reconnection phenomena has broad implications in how Earth's magnetosphere functions, how solar flares and coronal mass ejections work-and how they might affect our planet, and a wide variety of astrophysical settings.

This new theory was developed to better explain recent large-scale three-dimensional kinetic simulations that describe the physics of this process at the most basic level.

"Previous kinetic studies have been primarily limited to simple two-dimensional models," said Daughton. "A team of researchers from across the Laboratory employed a first-principles approach to study the dynamic evolution in three dimensions using the plasma simulation code VPIC, a particle-in-cell plasma physics code."

Daughton continues, "These 3-D calculations required a thousand times more computational resources than the 2-D models. This only became possible recently due to the development of petascale supercomputers, first with Roadrunner at Los Alamos and more recently on the Kraken machine at Oak Ridge National Laboratory. Funding from the LANL Laboratory Directed Research & Development program has allowed us to exploit these powerful new machines as soon as they became available."

The Nature Physics article reports the new results are drastically different than the previous 2-D models and feature the formation and turbulent interaction of helical magnetic structures known as flux ropes. Early researchers speculated that such flux ropes may form during the initial development of magnetic reconnection, but the new results demonstrate that the vast majority of these structures are produced within intense electron current sheets that form at later time. The key features of this complex evolution are explained by the new theory described in this paper.

These results have important implications for spacecraft observations of magnetic reconnection in the magnetosphere and in the solar wind. Many of these new predictions should be observable by NASA's upcoming Magnetospheric Multiscale (MMS) mission-a group of four spacecraft that will make high-quality measurements of magnetic reconnection as it occurs in the magnetosphere. Los Alamos researchers were recently awarded a three-year $1.6 million grant from NASA to continue these research efforts in support of the MMS mission, which will launch in 2014.

The physics of magnetic reconnection is central to understanding the processes that control the magnetosphere, a kind of "global shield" that protects Earth from deadly cosmic radiation coming from solar flares and the solar wind.

Understanding reconnection physics may lead to better models of the near-earth space environment and the potential harmful effects to both space travelers and satellites. "These are really dramatic large-scale simulation results," said Daughton. "Together with theory, laboratory experiments, and new satellite observations, we believe these simulations could change some important ideas of how magnetic reconnection occurs."

The research team includes Daughton, Vadim Roytershteyn, Lin Yin, Brian Albright, Kevin Bowers, and Ben Bergen at Los Alamos as well as Homa Karimabadi at the University of California, San Diego.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

YouTube video at:

Related News Press

News and information

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Laboratories

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Physics

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

The quantum fridge: It all comes down to quantum physics: scientists at TU Wien have analyzed why some gases can be cooled down to extremely low temperatures February 2nd, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Discoveries

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Aerospace/Space

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations January 25th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic