Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.
New LANL 3-D model shows the formation of "flux ropes" in a thin boundary layer of a magnetic field. This research seeks to uncover the most fundamental physics of magnetic reconnection, key to a better understanding of Earth's magnetosphere. LANL image.

Abstract:
New 3D simulations of magnetic reconnection published in the scientific journal Nature Physics describes how "flux ropes" are spontaneously generated; work supports upcoming NASA spaceflight.

Los Alamos Scientists Propose New Theory for Development of Turbulent Magnetic Reconnection

Los Alamos, NM | Posted on April 16th, 2011

In this week's Nature Physics, Los Alamos physicist Bill Daughton and a team of scientists present a new theory of how magnetic reconnection proceeds in high-temperature plasmas.

Magnetic reconnection is a fundamental process in physics, the continuous breaking and rearrangement of magnetic field lines in a plasma-a hot ionized gas. Understanding reconnection phenomena has broad implications in how Earth's magnetosphere functions, how solar flares and coronal mass ejections work-and how they might affect our planet, and a wide variety of astrophysical settings.

This new theory was developed to better explain recent large-scale three-dimensional kinetic simulations that describe the physics of this process at the most basic level.

"Previous kinetic studies have been primarily limited to simple two-dimensional models," said Daughton. "A team of researchers from across the Laboratory employed a first-principles approach to study the dynamic evolution in three dimensions using the plasma simulation code VPIC, a particle-in-cell plasma physics code."

Daughton continues, "These 3-D calculations required a thousand times more computational resources than the 2-D models. This only became possible recently due to the development of petascale supercomputers, first with Roadrunner at Los Alamos and more recently on the Kraken machine at Oak Ridge National Laboratory. Funding from the LANL Laboratory Directed Research & Development program has allowed us to exploit these powerful new machines as soon as they became available."

The Nature Physics article reports the new results are drastically different than the previous 2-D models and feature the formation and turbulent interaction of helical magnetic structures known as flux ropes. Early researchers speculated that such flux ropes may form during the initial development of magnetic reconnection, but the new results demonstrate that the vast majority of these structures are produced within intense electron current sheets that form at later time. The key features of this complex evolution are explained by the new theory described in this paper.

These results have important implications for spacecraft observations of magnetic reconnection in the magnetosphere and in the solar wind. Many of these new predictions should be observable by NASA's upcoming Magnetospheric Multiscale (MMS) mission-a group of four spacecraft that will make high-quality measurements of magnetic reconnection as it occurs in the magnetosphere. Los Alamos researchers were recently awarded a three-year $1.6 million grant from NASA to continue these research efforts in support of the MMS mission, which will launch in 2014.

The physics of magnetic reconnection is central to understanding the processes that control the magnetosphere, a kind of "global shield" that protects Earth from deadly cosmic radiation coming from solar flares and the solar wind.

Understanding reconnection physics may lead to better models of the near-earth space environment and the potential harmful effects to both space travelers and satellites. "These are really dramatic large-scale simulation results," said Daughton. "Together with theory, laboratory experiments, and new satellite observations, we believe these simulations could change some important ideas of how magnetic reconnection occurs."

The research team includes Daughton, Vadim Roytershteyn, Lin Yin, Brian Albright, Kevin Bowers, and Ben Bergen at Los Alamos as well as Homa Karimabadi at the University of California, San Diego.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

YouTube video at:

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Physics

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Discoveries

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Aerospace/Space

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Well Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic