Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Livermore researchers deveop battery-less chemical detector

A battery-less chemical sensor relies on dynamic interactions of molecules with semiconductor nanowire surfaces that can induce electrical voltages between segments of nanowires.
A battery-less chemical sensor relies on dynamic interactions of molecules with semiconductor nanowire surfaces that can induce electrical voltages between segments of nanowires.

Abstract:
Unlike many conventional chemical detectors that require an external power source, Lawrence Livermore researchers have developed a nanosensor that relies on semiconductor nanowires, rather than traditional batteries.

Livermore researchers deveop battery-less chemical detector

Livermore, CA | Posted on April 6th, 2011

The device overcomes the power requirement of traditional sensors and is simple, highly sensitive and can detect various molecules quickly. Its development could be the first step in making an easily deployable chemical sensor for the battlefield.

The Lab's Yinmin "Morris" Wang and colleagues Daniel Aberg, Paul Erhart, Nipun Misra, Aleksandr Noy and Alex Hamza, along with collaborators from the University of Shanghai for Science and Technology, have fabricated the first-generation battery-less detectors that use one-dimensional semiconductor nanowires.

The nanosensors take advantage of a unique interaction between chemical species and semiconductor nanowire surfaces that stimulate an electrical charge between the two ends of nanowires or between the exposed and unexposed nanowires.

The group tested the battery-less sensors with different types of platforms - zinc-oxide and silicon -- using ethanol solvent as a testing agent.

In the zinc-oxide sensor the team found there was a change in the electric voltage between the two ends of nanowires when a small amount of ethanol was placed on the detector.

"The rise of the electric signal is almost instantaneous and decays slowly as the ethanol evaporates," Wang said.

However, when the team placed a small amount of a hexane solvent on the device, little electric voltage was seen, "indicating that the nanosensor selectively responds to different types of solvent molecules," Wang said.

The team used more than 15 different types of organic solvents and saw different voltages for each solvent. "This trait makes it possible for our nanosensors to detect different types of chemical species and their concentration levels," Wang said.

The response to different solvents was somewhat similar when the team tested the silicon nanosensors. However, the voltage decay as the solvent evaporated was drastically different from the zinc-oxide sensors. "The results indicate that it is possible to extend the battery-less sensing platform to randomly aligned semiconductor nanowire systems," Wang said.

The team's next step is to test the sensors with more complex molecules such as those from explosives and biological systems.

The research appears on the inside front cover of the Jan. 4 issue of Advanced Materials.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Sensors

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project