Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > SiEnergy Systems demonstrates breakthrough scalability of its nanometric thin film solid oxide fuel cells

Abstract:
SiEnergy Systems, an Allied Minds company commercializing thin film solid oxide fuel cell (SOFC) technology from Harvard University, is pleased to announce breakthrough results in scaling up the active area of its nanometric thin film SOFC. Principal Scientist, Masaru Tsuchiya, made this advancement in collaboration with Harvard University researchers, Dr. Bo-Kuai Lai and Professor Shriram Ramanathan.

SiEnergy Systems demonstrates breakthrough scalability of its nanometric thin film solid oxide fuel cells

Boston, MA | Posted on April 5th, 2011

In a paper published in the April 3, 2011 online issue of Nature Nanotechnology, the researchers presented thermomechanically stable, nanometer scale electrolyte membranes with lateral dimensions on the scale of millimeters to centimeters. A metal grid placed adjacent to the fuel cell provided mechanical stability as well as enhanced electrical conductance. The demonstrated performance includes a power density of over 150 mW/cm2 at 510°C with a platinum-free cathode, and a total power output of over 20mW from a single fuel cell chip, the leading performance among nanometric thin film SOFCs.

The breakthrough has practical relevance for the broad commercialization of fuel cells since thin film SOFC s offer three major advantages over conventional SOFCs:

1. They reduce the amount of materials required in making fuel cells, including rare-earth elements such as yttrium and lanthanum, thus significantly reducing the material cost of SOFCs.

2. The grid's structure reduced the potential of breakage compared to other thin film SOFC.

3. Enhanced conductance across the nanometric thin film electrolytes enables operation at a commercially advantageous temperature of 350-550°C. Conventional SOFC temperatures (600-1,000°C) make them more susceptible to corrosion and requires more materials for insulation.

"Although proof-of-concept nanometric thin film SOFCs operating at 350-550°C have been demonstrated before, their scalability has remained a significant challenge till now. We have successfully demonstrated scalability of nanometer thin film SOFC technology through careful optimization of metallic grid design and oxide deposition parameters," says Dr. Tsuchiya, Principal Scientist at SiEnergy and the lead author of the paper.

SiEnergy is currently expanding its operations to accelerate the commercialization of its novel thin film SOFC technology.

####

About SiEnergy Systems
SiEnergy Systems is a privately held startup company formed by Allied Minds, Inc. to commercialize proprietary thin film solid oxide fuel cell technology developed at Harvard University. The technology uses inexpensive micro-fabrication methods to create SOFCs with nanometer scale electrolytes that operate at low temperature, use less material, and are scalable to meet various power requirements. The “Silicon Energy” reduces the cost of SOFCs and creates clean and affordable mobile and small stationary power sources.

About Allied Minds, Inc.

Allied Minds is a $250M private equity-funded innovation company with offices in Boston and Los Angeles. The company creates startup businesses based on early-stage technology developed at U.S. universities and national labs, and serves as a holding company that supports these businesses with capital, management and shared services. Allied Minds is the premier firm to utilize this novel and fully integrated approach to technology investing. The company’s subsidiary investments span multiple business sectors and offer an attractive risk-return profile, a deliverable timeline and potential products that will be groundbreaking in their respective fields. www.alliedminds.com

For more information, please click here

Contacts:
SiEnergy Systems LLC, an Allied Minds company
Vincent Chun
617-419-1800
General Manager

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Thin films

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Even geckos can lose their grip July 9th, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

Micro-manufacturing breakthrough is wired for sound June 24th, 2014

Discoveries

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Energy

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

Research partnerships

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE