Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SiEnergy Systems demonstrates breakthrough scalability of its nanometric thin film solid oxide fuel cells

Abstract:
SiEnergy Systems, an Allied Minds company commercializing thin film solid oxide fuel cell (SOFC) technology from Harvard University, is pleased to announce breakthrough results in scaling up the active area of its nanometric thin film SOFC. Principal Scientist, Masaru Tsuchiya, made this advancement in collaboration with Harvard University researchers, Dr. Bo-Kuai Lai and Professor Shriram Ramanathan.

SiEnergy Systems demonstrates breakthrough scalability of its nanometric thin film solid oxide fuel cells

Boston, MA | Posted on April 5th, 2011

In a paper published in the April 3, 2011 online issue of Nature Nanotechnology, the researchers presented thermomechanically stable, nanometer scale electrolyte membranes with lateral dimensions on the scale of millimeters to centimeters. A metal grid placed adjacent to the fuel cell provided mechanical stability as well as enhanced electrical conductance. The demonstrated performance includes a power density of over 150 mW/cm2 at 510°C with a platinum-free cathode, and a total power output of over 20mW from a single fuel cell chip, the leading performance among nanometric thin film SOFCs.

The breakthrough has practical relevance for the broad commercialization of fuel cells since thin film SOFC s offer three major advantages over conventional SOFCs:

1. They reduce the amount of materials required in making fuel cells, including rare-earth elements such as yttrium and lanthanum, thus significantly reducing the material cost of SOFCs.

2. The grid's structure reduced the potential of breakage compared to other thin film SOFC.

3. Enhanced conductance across the nanometric thin film electrolytes enables operation at a commercially advantageous temperature of 350-550°C. Conventional SOFC temperatures (600-1,000°C) make them more susceptible to corrosion and requires more materials for insulation.

"Although proof-of-concept nanometric thin film SOFCs operating at 350-550°C have been demonstrated before, their scalability has remained a significant challenge till now. We have successfully demonstrated scalability of nanometer thin film SOFC technology through careful optimization of metallic grid design and oxide deposition parameters," says Dr. Tsuchiya, Principal Scientist at SiEnergy and the lead author of the paper.

SiEnergy is currently expanding its operations to accelerate the commercialization of its novel thin film SOFC technology.

####

About SiEnergy Systems
SiEnergy Systems is a privately held startup company formed by Allied Minds, Inc. to commercialize proprietary thin film solid oxide fuel cell technology developed at Harvard University. The technology uses inexpensive micro-fabrication methods to create SOFCs with nanometer scale electrolytes that operate at low temperature, use less material, and are scalable to meet various power requirements. The “Silicon Energy” reduces the cost of SOFCs and creates clean and affordable mobile and small stationary power sources.

About Allied Minds, Inc.

Allied Minds is a $250M private equity-funded innovation company with offices in Boston and Los Angeles. The company creates startup businesses based on early-stage technology developed at U.S. universities and national labs, and serves as a holding company that supports these businesses with capital, management and shared services. Allied Minds is the premier firm to utilize this novel and fully integrated approach to technology investing. The company’s subsidiary investments span multiple business sectors and offer an attractive risk-return profile, a deliverable timeline and potential products that will be groundbreaking in their respective fields. www.alliedminds.com

For more information, please click here

Contacts:
SiEnergy Systems LLC, an Allied Minds company
Vincent Chun
617-419-1800
General Manager

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Thin films

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Discoveries

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Announcements

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Fuel Cells

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Research partnerships

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic