Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Antibiotics Wrapped in Nanofibers Turn Resistant Disease-Producing Bacteria Into Ghosts

Abstract:
Encapsulating antibiotics inside nanofibers, like a mummy inside a sarcophagus, gives them the amazing ability to destroy drug-resistant bacteria so completely that scientists described the remains as mere "ghosts," according to a report today at the the 241st National Meeting & Exposition of the American Chemical Society (ACS).

Antibiotics Wrapped in Nanofibers Turn Resistant Disease-Producing Bacteria Into Ghosts

Anaheim, CA | Posted on March 30th, 2011

Mohamed H. El-Newehy, Ph.D., leader of the nanofibers research team, said the new technology has potentially important applications in the on-going battle against antibiotic-resistant infections. Estimates suggest that more than 100,000 people in the United States alone develop such infections each year, with nearly 20,000 deaths. Health care costs from those infections may exceed $20 billion annually.

"The rapid emergence of bacteria resistant to commonly used antibiotics has become a serious public health problem," said El-Newehy. "There is an urgent need to identify new antibiotics that work in different ways that can overcome resistance. Our approach is not a new antibiotic, but a new way of delivering existing antibiotics."

That approach, El-Newehy explained, could make new treatments available to patients much faster than trying to discover and develop brand-new medicines, a process that typically takes 10-12 years and costs $800 million to almost $2 billion. It could be used against a broad range of bacteria to fight disease, prevent bacterial and fungal contamination in the food industry, inhibit the growth of microorganisms in drinking water and enhance the effects of chemotherapy, he added.

It involves putting common antibiotics inside nanofibers made of polyvinyl alcohol and polyethylene oxide — wisps of plastic-like material so small that peach hair or a strand of spider silk are gigantic by comparison. Nanofibers can't even be seen under a regular microscope, and almost a billion could be lined up side-by-side along the length of a yard stick.

El-Newehy's group knew that nanofibers have special properties due to their high surface area to weight ratio. Those properties have kindled research on multiple biomedical applications nanofibers, including wound dressings, medical textiles, antibacterial materials to control post-operative inflammation, and new ways of delivering drugs. They decided to test the effects of nanofibers with multiple antibiotics encapsulated directly into fiber, using laboratory cultures of various microbes. Antibiotics wrapped inside nanofibers were highly effective in killing a variety of disease causing bacteria and fungi, including E. coli and Pseudomonas aeruginosa, two increasingly drug-resistant microbes.

"When treated with antibiotics wrapped in nanofibers, the microbes were severely damaged and many cells were enlarged, elongated, fragmented, or left as just empty ghosts," El-Newehy said. "The fibers by themselves, without antibiotic did not affect the bacteria. They seem to work by boosting the power of the antibiotics. By wrapping the anti-microbial agents in the fibers, it makes the drug action more focused and the agents are effective for longer period of time than with conventional delivery techniques."

El-Newehy, with the Petrochemical Research Chair, Department of Chemistry College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia, said that besides drug delivery, nanofibers are being used for tissue engineering, wound dressing, medical textiles and antimicrobial materials that can be used to control post-operative inflammation, promote wound healing and dressing, especially for diabetic ulcers.

Salem Al-Deyab, Ph.D., the supervisor of Petrochemical Research Chair at King Saud University, said that this study was funded by the Petrochemical Research Chair at King Saud University, Saudi Arabia. In addition, Petrochemical Research Chair has the lead in the possession of the first machine (Nanospider) for producing nanofibers in Saudi Arabia, said Al-Deyab. Officials plan a major effort to develop the Nanofibers Research Center at Petrochemical Research Chair to become a major center for Nanofibers Research for different applications at King Saud University, said Al-Deyab.

####

About American Chemical Society (ACS)
The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

714-765-2012 (Meeting, March 27-31)
202-872-6042 (Before March 27)

Michael Woods

714-765-2012 (Meeting, March 27-31)
202-872-6293 (Before March 27)

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project