Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Atom-thick sheets hold the key to new technologies

Abstract:
Scientists have developed a new technique for splitting ‘layered materials' into atom-sized nanosheets, which could lead to advances in energy storage technologies and electronic devices, according to research published today in the journal Science.

Atom-thick sheets hold the key to new technologies

London, UK | Posted on March 28th, 2011

Layered materials are man-made and there are more than 150 types including boron nitride, molybdenum disulfide and tungsten disulfide. These materials have the potential to conduct and store energy when they are split into microscopic layers called "nanosheets". For decades, scientists have been working on methods to create nanosheets, but previous attempts have been time-consuming and resulted in the nanosheets being damaged, making them fragile and unsuitable for use.

A team of researchers have demonstrated for the first time in their study that they can make ‘nanosheets' from layered materials, without damaging their electrical and energy storage properties. The researchers say these nanosheets could be used to develop the next generation of metallic and semi-metallic composite materials. They could also be used to make electronic devices including energy storage technologies and thermoelectric materials that can convert heat into electrical energy.

The researchers say their technique for creating nanosheets is simple, fast and inexpensive. They beleive that it could be scaled up to an industrial level, where billions of nanosheets could be produced at an hourly rate.

There are over 150 types of layered materials including boron nitride, molybdenum disulfide and tungsten disulfide.

The technique involves the scientists mixing layered material with a solvent, which is a liquid solution that dissolves substances. The solvent is subjected to high frequency sound energy from an ultrasonic probe. The combined effect of the solvent and the sound energy vibrations cause the layered material to separate into nanosheets.

The international study includes researchers from the London Centre for Nanotechnology, Imperial College London, the University of Oxford, Trinity College Dublin, Korea University and Texas A&M University.

Professor David McComb, from the Department of Materials at Imperial College London, who contributed to the research, said: "Nanosheets could be used to advance a range of technologies: from sensors to batteries and super-strong materials. Nanosheets could also be combined with other conventional materials such as silicon to create new kinds of hybrid computing technologies."

The research carried out at Imperial was supported by the Engineering and Physical Sciences Research Council under the Access to Nanoscience Equipment award.

####

For more information, please click here

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal link: Science 4 February 2011: Vol. 331 no. 6017 pp. 568-571

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Energy

Nanoparticle technology triples the production of biogas October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE