Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Size Matters: Smaller Particles Could Make Solar Panels More Efficient: Researchers study quantum dots to increase the amount of electricity solar panels produce


Illustration of multiple-exciton generation (MEG), a theory that suggests it is possible for an electron that has absorbed light energy, called an exciton, to transfer that energy to more than one electron, resulting in more electricity from the same amount of absorbed light. The left side shows an electron promoted to a high energy state (blue) plus the "hole" vacated by the electron (red). The right side shows the original exciton (now dark green/red) and a new exciton (light green/orange) after MEG. The top image shows a conceptualized version of the idea, while the bottom shows an actual exciton and bi-exciton using the same color scheme.

Credit: Mark T. Lusk, Department of Physics, Colorado School of Mines
Illustration of multiple-exciton generation (MEG), a theory that suggests it is possible for an electron that has absorbed light energy, called an exciton, to transfer that energy to more than one electron, resulting in more electricity from the same amount of absorbed light. The left side shows an electron promoted to a high energy state (blue) plus the "hole" vacated by the electron (red). The right side shows the original exciton (now dark green/red) and a new exciton (light green/orange) after MEG. The top image shows a conceptualized version of the idea, while the bottom shows an actual exciton and bi-exciton using the same color scheme.

Credit: Mark T. Lusk, Department of Physics, Colorado School of Mines

Abstract:
Studies done by Mark Lusk and colleagues at the Colorado School of Mines could significantly improve the efficiency of solar cells. Their latest work describes how the size of light-absorbing particles--quantum dots--affects the particles' ability to transfer energy to electrons to generate electricity.

Size Matters: Smaller Particles Could Make Solar Panels More Efficient: Researchers study quantum dots to increase the amount of electricity solar panels produce

Arlington, VA | Posted on March 25th, 2011

The results are published in the April issue of the journal ACS Nano.

The advance provides evidence to support a controversial idea, called multiple-exciton generation (MEG), which theorizes that it is possible for an electron that has absorbed light energy, called an exciton, to transfer that energy to more than one electron, resulting in more electricity from the same amount of absorbed light.

Quantum dots are man-made atoms that confine electrons to a small space. They have atomic-like behavior that results in unusual electronic properties on a nanoscale. These unique properties may be particularly valuable in tailoring the way light interacts with matter.

Experimental verification of the link between MEG and quantum dot size is a hot topic due to a large degree of variation in previously published studies. The ability to generate an electrical current following MEG is now receiving a great deal of attention because this will be a necessary component of any commercial realization of MEG.

For this study, Lusk and collaborators used a National Science Foundation (NSF)-supported high performance computer cluster to quantify the relationship between the rate of MEG and quantum dot size.

They found that each dot has a slice of the solar spectrum for which it is best suited to perform MEG and that smaller dots carry out MEG for their slice more efficiently than larger dots. This implies that solar cells made of quantum dots specifically tuned to the solar spectrum would be much more efficient than solar cells made of material that is not fabricated with quantum dots.

According to Lusk, "We can now design nanostructured materials that generate more than one exciton from a single photon of light, putting to good use a large portion of the energy that would otherwise just heat up a solar cell."

The research team, which includes participation from the National Renewable Energy Laboratory, is part of the NSF-funded Renewable Energy Materials Research Science and Engineering Center at the Colorado School of Mines in Golden, Colo. The center focuses on materials and innovations that will significantly impact renewable energy technologies. Harnessing the unique properties of nanostructured materials to enhance the performance of solar panels is an area of particular interest to the center.

"These results are exciting because they go far towards resolving a long-standing debate within the field," said Mary Galvin, a program director for the Division of Materials Research at NSF. "Equally important, they will contribute to establishment of new design techniques that can be used to make more efficient solar cells."

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa Van Pay
NSF
(703) 292-8796


Program Contacts
Mary E. Galvin
NSF
(703) 292-8562


Principal Investigators
Mark Lusk
Colorado School of Mines
(303) 273-3675

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project