Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Zinc stannate nanostructures: growing a highly useful semiconductor

Figure 1: Scanning electron microscope images of ZTO microstructures: (a) low
magnification image of the Zn2SnO4 octahedrons; (b) ZnSn(OH)6 cubes formed in the initial
stage of the reaction (note secondary nucleation on the cube surfaces); (c) a Zn2SnO4 octahedron;
(d) coalescing nanoplates. (Reproduced with permission, © 2010 Elsevier B.V.)
Figure 1: Scanning electron microscope images of ZTO microstructures: (a) low magnification image of the Zn2SnO4 octahedrons; (b) ZnSn(OH)6 cubes formed in the initial stage of the reaction (note secondary nucleation on the cube surfaces); (c) a Zn2SnO4 octahedron; (d) coalescing nanoplates. (Reproduced with permission, © 2010 Elsevier B.V.)

Abstract:
This timely review focuses on the synthesis of zinc stannate (zinc tin oxide: ZTO) nanostructures by the hydrothermal method, as well as the physical properties and applications of different zinc stannate nanostructures in solar cells, gas sensors, and photocatalysts.

Zinc stannate nanostructures: growing a highly useful semiconductor

Tsukuba, Japan | Posted on March 24th, 2011

The review is published in March 2011 in the journal Science and Technology of Advanced MaterialsVol. 12(2011) p. 013004. Itis presented by Sunandan Baruah and Joydeep Dutta from the Asian Institute of Technology, Klong Luang, Thailand.

Binary semiconducting oxide nanostructures, such as zinc oxide and titanium oxide, are widely used in sensors and catalysts. However, ternary semiconducting oxide nanostructures, which show higher electrical conductivity and are more stable than the binary type, are increasingly in demand for specific applications due to their particular physical properties. In contrast to conventional ‘top-down' processes involving physically breaking large macroscopic materials into nanoparticles, the chemically based ‘self-organization' approach offers an inexpensive and flexible means of precisely controlling the size, crystal structure and optoelectronic properties of semiconducting oxide nanostructures, which is crucial for the use of ZTO in specific applications.

ZTO nanostructures can be produced using a variety of methods including thermal evaporation, high-temperature calcination, mechanical grinding, sol-gel synthesis, hydrothermal reaction, and ion-exchange reaction. Different methods produce different ratios of ZTO oxides and impurities, expressed in alternative crystal structures. The authors describe the pertinent features of the hydrothermal growth method for synthesizing ZTO, including high purity of the stable zinc orthostannate Zn2SnO4 and the accompanying ‘cubic spinel' crystal structure. Moreover, hydrothermal growth is an attractive and relatively simple method since crystal growth occurs at mild temperatures in water.

Typical hydrothermal growth of ZTO nanostructures consists of using an aqueous mixture of a zinc salt, such as zinc nitrate or zinc chloride, and stannic chloride. This mixture is then reduced at 200-250 °C in sodium hydroxide or ammonium hydroxide in a high-pressure environment. Various methods for hydrothermal growth of ZTO nanostructures are detailed by the authors, with varying end products in terms of crystal structure and ‘phase composition' - amounts of the particular oxides produced.

The physical properties of ZTO depend on the method used for their synthesis. ZTO is a ‘wide-gap' semiconductor with a bandgap of around 3.6 eV, but the precise bandgap energy depends on the conditions of synthesis, which might result in quantum confinement effects arising from the small size of the nanostructures. Controlling the photoelectrochemical properties of ZTO has practical importance, and relating the optical and electronic properties of ZTO with the composition and crystal structure can pave the way for applications of other complex oxides.

The authors describe industrial applications arising from the photoelectrochemical properties of ZTO. Firstly, as a photocatalyst ZTO can be used for degrading harmful pesticides from ground water; secondly the porous nanostructures are ideal for gas sensing as they offer high surface to volume ratios; and thirdly ZTO has potential in the field of dye-sensitized solar cells, an economically plausible alternative to conventional solar cells. Given that only a few morphologies have been reported, the authors conjecture that within the next decade ZTO nanostructures will find uses in further industrial applications.

This review contains 131 references and 22 figures and provides an invaluable source of up-to-date information for newcomers and experts in this exciting area of research.

####

Contacts:
National Institute for Materials Science
Tsukuba, Japan
Email:
Tel. +81-(0)29-859-2494

Copyright © National Institute for Materials Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

[1] Sunandan Baruah and Joydeep Dutta, Zinc stannate nanostructures: hydrothermal synthesis, Sci. Technol. Adv. Mater.12 (2011) 013004

[2] Center of Excellence in Nanotechnology, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathumthani 12120, Thailand

Related News Press

News and information

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Chip Technology

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Sensors

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Announcements

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Energy

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project